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Abstract

Humans can make remarkable social inferences by watching each other’s be-
havior. In many cases, however, people can also make social inferences about
agents whose behavior they cannot see, based only on the physical evidence left
behind. We hypothesized that this capacity is supported by a form of mental
event reconstruction. Under this account, observers derive social inferences by
reconstructing the agent’s behavior, based on the physical evidence that revealed
their presence. We present a computational model of this idea, embedded in
a Bayesian framework for action understanding, and show that its predictions
match human inferences with high quantitative accuracy. Specifically, Experi-
ment 1 shows that people can infer where an agent came from and which goal
they pursued in a room, all from a small pile of cookie crumbs. Experiment 2
shows that people can explicitly reconstruct the actions that the agent took, and
these reconstructed trajectories can predict the entry point and goal inferences
from Experiment 1. Finally, Experiment 3 shows that people can also infer
whether one or two agents were in a room based on the position of two piles of
cookie crumbs. Our results shed light on how people extract social information
from the physical world.

Key words: Computational modeling, Event reconstruction, Social cognition,
Theory of Mind
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1. Introduction1

As social animals, humans possess a specialized cognitive system to process,2

understand, and predict each other’s behavior, known as a Theory of Mind3

(Gopnik et al., 1997; Wellman, 2014). Theoretical and empirical work suggests4

that human Theory of Mind is instantiated as a mental model that specifies5

the causal relation between other people’s unobservable mental states and their6

observable actions. That is, Theory of Mind captures how we expect other7

people’s thoughts, preferences, and feelings to guide what they do. Equipped8

with this intuitive theory, people can infer the mental states that causally give9

rise to other people’s observed behavior.10

A rapidly growing body of work suggests that the causal model within The-11

ory of Mind is structured around an assumption that agents act to maximize12

their utilities—the difference between the subjective costs they incur and the13

subjective rewards they obtain—capturing the idea that we intuitively expect14

others to act rationally and efficiently (see Jara-Ettinger, 2019, for review). Con-15

sistent with this view, computational models of mental-state inference via util-16

ity maximization reach human-level performance on simple social tasks (Baker17

et al., 2017; Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Jara-Ettinger18

et al., 2020), they capture richer forms of social behavior including pedagogy19

(Bridgers et al., 2020; Ho et al., 2019) and moral reasoning (Ullman et al., 2009),20

they explain social reasoning in early childhood and infancy (Gergely & Csibra,21

2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Lucas et al., 2014), and they22

have identifiable neural correlates (Collette et al., 2017).23

Despite its success, this approach implicitly posits that mental-state infer-24

ence requires access to someone’s observable behavior, as it is these observed25

actions that enable us to evaluate the plausibility of different mental states.26

In many cases, however, people can make social inferences about agents whose27

behavior we did not get the opportunity to see. For example, imagine walking28

into an office building and finding a vacant receptionist desk with a chewed-up29

pencil, a half-filled crossword puzzle, and a cellphone. From this arrangement30

of objects, we can immediately infer that the receptionist might have been ex-31

periencing anxiety or restlessness (as the pencil was chewed-up), that they were32

likely procrastinating or had few tasks to complete at the moment (as they were33

working on a crossword), and that they expected to be gone only momentarily34

(as they chose to leave their valuable belongings unattended).35

As the examples above show, human social inference is not limited to an36
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ability to extract social information from observable actions—we can also make37

social inferences from physical scenes with no direct social or temporal informa-38

tion. How do we achieve this and how fine-grained are these inferences? Here39

we propose that social inferences about unobservable agents are supported by40

a basic form of event reconstruction, where, upon seeing indirect evidence of an41

agent’s presence, we reconstruct what actions they likely took, enabling us to42

reason about the agent’s behavior in a similar way to how we would if we had43

seen them act first-hand.44

While it has long been known that the ability to infer social information from45

observed actions emerges early in infancy (Gergely & Csibra, 2003; Onishi &46

Baillargeon, 2005; Woodward, 1998), recent studies suggest that social reasoning47

from physical events also emerges early in childhood. By preschool, children can48

estimate the difficulty associated with building different physical arrangements49

of objects (Gweon et al., 2017); they understand which kinds of actions leave50

physical traces in the environment and which kinds of actions do not (Jacobs51

et al., 2021); they can infer what someone knew based on physical evidence52

for how they searched an area (Pelz et al., 2020); and they can even detect53

the transmission of ideas by comparing artifacts created by different agents54

(Pesowski et al., 2020).55

This past research suggests that the capacities needed to perform social in-56

ference via event reconstruction might be in place from childhood. However,57

to our knowledge, no work has formally explored the event reconstruction hy-58

pothesis that we propose here. Specifically, we hypothesized that people can59

causally reason about how goals lead to actions, and how actions leave traces60

in the environment. Combining these two causal models enables people to un-61

derstand how goals lead to observable traces in the environments, connected by62

an inferred internal variable consisting of the actions that the agent took, which63

we call an event reconstruction. Here we present a computational model of this64

idea, testing social reasoning from agent-less physical scenes. Given indirect65

evidence that someone was present, our model infers what the agent was doing66

(i.e., reconstructs their actions) and why (i.e., infers their goals) through a gen-67

erative model of how goals produce actions, and how actions leave observable68

evidence.69

1.1. Connection to related proposals in social psychology70

Consistent with our proposal, research in social psychology has found that71

people leave “behavioral residues” in their environments: physical cues that72
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support rich inferences about their personality traits. For example, by looking73

at a picture of someone’s messy desk, people can infer that the inhabitant is74

likely disorganized. From similar displays, people can also infer the inhabitant’s75

degree of extraversion, conscientiousness, and even openness to new experiences76

(Webb et al., 1966; Gosling et al., 2002, 2008).77

These inferences have been proposed to stem from a two-stage process, where78

people first use physical cues (such as a desk’s cleanliness, the amount of books79

in the room, or the cheerfulness of the décor) to infer someone’s behavior, and80

then use this behavior to infer the underlying dispositions (Gosling et al., 2002;81

Brunswik, 1956). In this model, cue utilization captures how people transform82

these cues into social inferences, and cue validity captures whether these are83

accurate. Our hypothesis is consistent with this model, and it can be thought84

of as proposing that cue utilization consists of a form of Bayesian event recon-85

struction. From this standpoint, our work can be thought of as proposing a86

mechanism for how people associate different physical traces to the underlying87

behavior. Our work contributes to this literature by proposing a fully specified88

computational theory behind event reconstruction, grounded in the expecta-89

tion that agents act rationally and efficiently in their environment, given their90

goals. Critically, however, previous models also account for inferences that peo-91

ple make based on stereotypes—a process that is outside of the scope of our92

work. We return to this point in the Discussion.93

1.2. The current work94

In Experiment 1, we first tested whether our model matched human infer-95

ences in a task where participants had to infer an agent’s entry point into a96

room and their goal, all from a single pile of cookie crumbs that revealed their97

presence (see Figure 1). In Experiment 2, we then explicitly tested people’s98

ability to reconstruct the actions they believe different agents took based on99

indirect physical evidence of their presence, lending further support to the idea100

that the inferences in Experiment 1 were supported by an ability to reconstruct101

events. Finally, if social reasoning from physical scenes is supported by event102

reconstruction, people should be able to also infer how many agents might have103

been present in a room, based on how many paths they need to reconstruct to104

explain the scene. We tested this prediction in Experiment 3. Combined, our105

results suggest that people have a nuanced capacity to infer social information106

from indirect evidence, and that these inferences are based on a basic capacity107

to “enhance” physical scenes by inferring agents’ spatiotemporal behavior based108
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on the indirect evidence that they leave behind. All studies were approved by109

the Yale University Institutional Review Board (protocol: “Online reasoning”110

#2000020357).111

2. Computational Framework112

Our model builds on a growing body of work showing that mental-state at-113

tribution is instantiated as Bayesian inference over a generative model of utility-114

maximizing action plans (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020;115

Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Lucas et al., 2014). In116

our model, however, rather than evaluating unobservable goals against observ-117

able actions, we model how people might use physical evidence to reconstruct118

the actions that an agent took, and use these reconstructed actions to attribute119

goals.120

To make our focus concrete, consider a situation like the ones shown in121

Figure 1a. Each of these displays represents a room with three possible goals122

(A in blue, B in orange, and C in green), two different doors (1 at the top in123

both rooms and 2 on the bottom and left, respectively), a set of walls (shown124

in dark gray), and a small pile of cookie crumbs that reveals that someone was125

previously in this room. Although we cannot see where this agent came from,126

what actions they took, or what goal they were pursuing, the cookie crumbs127

nonetheless contain information that we might be able to extract. In Figure 1a128

(left), the cookie crumbs intuitively reveal that the agent entered through door129

1 and that they were likely pursuing goal A or C, but not goal B. In Figure130

1a (right), the cookie crumbs intuitively reveal that the agent was pursuing131

goal C, but it is unclear whether they entered through door 1 or door 2. Our132

computational model aims to explain how we performed these inferences.133

Formally, we model the environment as a gridworld, where the possible states134

of the world are given by the different positions in space that agents can occupy.135

At each time step, we assume that agents can move in any of the four cardinal136

directions and that these actions successfully move them in their intended direc-137

tion (except when attempting to cross a wall, in which case the agent remains138

in the same position as they were before).139

Given an observed static scene s (a gridworld with a set of goals, doors, walls,140

and a pile of cookie crumbs), the objective is to infer where the agent entered141

the room from (a door d) and which goal they pursued (a goal g), formally142
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Figure 1: (a) Example stimuli from Experiment 1. Potential goals are positioned in the
corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded numer-
ically. Walls are shown in dark gray. Each trial included a pile of cookie crumbs positioned
in a part of the room. (b) Visualizations of the underlying event reconstruction performed by
our computational model for the examples above. Each line represents an inferred possible
path, color-coded to indicate time, moving from light green to dark blue.

expressed as143

p(d, g|s) ∝ `(s|d, g)p(d, g), (1)

where `(s|d, g) is the likelihood of encountering scene s if an agent had indeed144

pursued goal g after entering through door d, and p(d, g) is the prior over doors145

and goals.146

According to our proposal, the ability to compute the likelihood function147

is mediated by a capacity to reconstruct the agent’s actions. Under this view,148

if we can reconstruct the actions that the agent took, then judgments about149

the agent’s entry point and goal are immediately revealed, as these are part150

of the reconstructed behavior (i.e., if we have access to the full reconstructed151

behavior, we can “see” where the agent entered from and where they were going).152

Formally, this idea can be implemented by expressing the likelihood function as153

`(s|d, g) =
∑
t∈T

p(s|t)︸ ︷︷ ︸
how do actions
leave traces?

×

how do agents
pursue goals?︷ ︸︸ ︷
p(t|d, g). (2)

Here t = (~s,~a) is a trajectory (from the set of all possible trajectories T), which154

consists of an ordered sequence of pairs of states and actions that the agent took.155
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p(s|t) is the probability that an agent who took trajectory t would produce the156

observed scene s, and p(t|g, d) is the probability that the agent would take157

trajectory t if they entered from door d with the intention to pursue goal g.158

This equation reveals the two components critical to our theory: an expectation159

of how agents navigate to complete their goals (p(t|d, g)), and an expectation of160

how agents’ actions leave observable traces in the environment (p(s|t)).161

To compute the expectations for how agents complete their goals, we used162

the standard framework previously developed in computational models of goal163

inference (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020) through Markov164

Decision Processes (MDPs)—a planning framework that makes it possible to165

compute the action plan or policy that maximizes an agent’s utility function166

(Bellman, 1957). Classical MDPs are designed to produce a single trajectory167

that fulfills the agent’s goal as efficiently as possible. In the cases that we con-168

sider, however, there are often multiple trajectories that can be equally efficient.169

As such, using a simple MDP can erroneously treat an efficient trajectory as170

unlikely if it is not an exact match to the solution that the MDP produced.171

To solve this problem, we built a probabilistic MDP that creates a probability172

distribution over all possible action plans, assigning higher probability to tra-173

jectories that are more efficient. Formally, we achieved this by softmaxing the174

MDP’s value function when building the probabilistic policy. We used a low175

temperature parameter to identify all possible action plans that are equally (or176

approximately equally) efficient, enabling us to implement the expectation that177

agents navigate efficiently towards their goals. Using a probabilistic MDP, the178

probability that an agent would take trajectory t, starting from door d with the179

intention to fulfill goal g is given by180

p(t|g, d) =

|t|∏
i=1

p(ai|si, g), (3)

where p(ai|si, g) is the probability of taking action ai in state si, and the state181

sequence is given by trajectory t.182

Finally, in our paradigm, we assume that the agent has a uniform probability183

of dropping the pile of cookie crumbs at any point in their path. The probability184

of observing scene s if the agent took trajectory t is therefore given by p(s|t) =185

1/|t| if the pile of cookie crumbs lies within the trajectory and 0 otherwise.186
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2.1. Implementation Details187

To generate testable predictions, we set a number of parameters in our model188

prior to data collection. These choices are all reflected in our pre-registered189

model predictions (see https://osf.io/q3ct5/). We began by setting a uni-190

form prior distribution over doors and goals, such that agents were equally likely191

to enter through any of the doors and equally likely to pursue any of the goals.192

Next, to model the forces that shape agents’ actions, we assumed that agents193

incur a constant cost of 1 for any action that they take, and that goals produced194

numerical rewards over the range 0−100. Finally, to make our MDP probabilis-195

tic, we applied a temperature parameter τ = 0.15 to the value function. This196

parameter was set a priori to ensure that the model would give equal prob-197

ability to all paths that were equally efficient, while only placing a negligible198

probability on erroneous and inefficient trajectories.199

Model inferences were obtained via Monte Carlo methods, sampling 1000200

combinations of doors and goals and 1000 trajectories conditioned on the se-201

lected door and goal. Figure 1b visualizes our model’s inferred trajectories for202

the examples shown in Figure 1a, with each line corresponding to a sample from203

the posterior distribution, color-coded to indicate time, moving from light green204

to dark blue. These visualizations show how our model reconstructs the agent’s205

probable spatiotemporal behavior, which in turn reveal the agent’s entry point206

and goal, matching the intuitive inferences associated with these examples in207

the introduction.208

3. Experiment 1a209

In Experiment 1a, we tested our model in a task where people had to infer210

which goal an agent was pursuing and where they came from, all from a sin-211

gle piece of indirect evidence about their presence. If people’s ability to infer212

goals from physical evidence is mediated by event reconstruction, then their213

judgments should show a quantitative fit to our model predictions, including214

fine-grained patterns of uncertainty. This study was pre-registered; all study215

materials can be found at https://osf.io/q3ct5/.216

3.1. Participants217

40 U.S. participants (as determined by their IP address) were recruited using218

Amazon Mechanical Turk (M = 37.02 years, SD = 11.20 years).219
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3.2. Stimuli220

Stimuli consisted of 23 gridworld images, like those in Figure 1a. Each221

gridworld was 7-by-7 squares in size and represented a room that contains three222

goal squares (A in blue, B in orange, and C in green), up to three doors (labeled223

1, 2, and 3), and a pile of cookie crumbs. The goals were always in the same224

corners, but the position of the doors and the pile of cookie crumbs varied225

between trials. In addition to these three features, a subset of trials included226

walls (shown by the dark gray squares in Figure 1a) that agents could not walk227

through.228

Our stimuli set was designed to capture different types of inferences while229

also controlling for features that simple heuristics could exploit (e.g., ensuring230

that the target goal was not always the one closest to the cookie crumbs, and231

that it could not be determined by projecting a straight line that intersected232

the entrance and the location of the cookie crumbs). We began by considering233

four different possible inference patterns: assigning probability close to 1 to234

a hypothesis (high certainty trials), assigning probability close to 0 to a235

hypothesis, while also not having full certainty over two remaining hypotheses236

(high negative certainty trials), assigning a higher probability to one of237

the hypotheses (partial certainty trials), and assigning an approximately238

uniform distribution to the hypothesis space (uncertain trials).239

We first designed seven single-door trials that captured each of these infer-240

ence patterns in goal inference (two high certainty, high negative cer-241

tainty, and partial certainty trials, and one uncertain trial; schematic242

versions shown in Figure 3a). We then designed 16 additional trials with mul-243

tiple doors by combining every possible inference pattern for the goal the agent244

was pursuing and the entrance that they took (schematic versions shown in245

Figure 3b).246

3.3. Procedure247

Participants read a brief tutorial that explained the logic of the task. After248

learning how to interpret the images, participants were told that agents were249

equally likely to enter the room from any of the doors with the intention of going250

directly to one of the three goals (to remove the possibility that agents pursue251

multiple goals, or wander aimlessly before selecting one). After the introduction,252

participants completed a questionnaire that ensured they read and understood253

the instructions. Participants that failed at least one question were redirected254

to the beginning of the instructions and given a second chance to participate in255
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Figure 2: Results from Experiment 1a. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. Color indicates
inference type and the dotted line shows the best linear fit with 95% confidence bands (in
light gray).

the study. Participants that failed the questionnaire twice were not permitted256

to participate in the study.257

Participants completed all 23 trials in a random order. On each trial, par-258

ticipants answered a multiple-choice attention-check question (“Which corner259

is farthest from Door 1 (there may be more than one)?”) and were asked to260

infer the agent’s goal (“Which corner is the person going for?”) using three261

continuous sliders, one for each goal (each ranging from 0, labeled as “definitely262

no,” to 1, labeled as “definitely”). Trials with at least two doors included a263

third question that asked participants to infer the agent’s entry point (“Which264

door did they come from?”) using one slider per door (each also ranging from265

0, labeled as “definitely no,” to 1, labeled as “definitely”). Participants were266

allowed to submit their responses for each trial only when they correctly an-267

swered the attention-check question. Otherwise, participants were prompted to268

“please pay attention and try again.”269

3.4. Results270

Each participant’s judgments were first normalized within-trial (such that271

every distribution over goals or doors added up to 1) and then averaged across272
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Figure 3: Detailed results from Experiment 1a. From top to bottom, each row of subplots
corresponds to the high certainty, high negative certainty, partial certainty, and
uncertain trials for goal inferences, respectively. (a) Results for trials that only had one
door. (b) Results for trials that had more than one door. From left to right, each column of
subplots corresponds to the high certainty, high negative certainty, partial certainty,
and uncertain trials for door inferences, respectively. The goals A, B, and C are indicated
by the blue, orange, and green squares, respectively. The doors are sequentially numbered in
a clockwise fashion, with door 1 starting from the top (or from the right if there is no top
door). Walls are marked as dark gray squares and the pile of cookie crumbs are indicated by
the brown squares. Red lines represent mean participant judgments and blue lines represent
our model’s predictions. Error bars on participant judgments represent 95% bootstrapped
confidence intervals.

participants. Figure 2 shows the results from Experiment 1a. Overall, our273

model showed a correlation of r = 0.94 (95% CI: 0.91 − 0.96) with participant274

judgments, and the strength of the model fit was similar when looking only at275

goal inferences (r = 0.95; 95% CI: 0.92−0.97) or door inferences (r = 0.92; 95%276

CI: 0.86− 0.95).277

Figure 3 shows our model’s results as a function of trial. In each subplot,278

the image at the top shows an abstract schematic of the trial, with the pile of279

cookie crumbs marked as a brown square. This figure reveals how our model not280

only predicted participant judgments in situations where the agent’s entry point281

and goal were clear, it also matched participant judgments in its expression of282

uncertainty. Critically, our model produced nuanced patterns of uncertainty283
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across trials, which reflect how well it was able to reconstruct the event, becom-284

ing less confident as a function of how much conflict there is in entry points and285

goals across different hypothetical reconstructions. The fact that this event-286

based uncertainty matched participant judgments with quantitative accuracy287

suggests that participants may have also been performing these inferences via288

some form of event reconstruction.289

One possibility is that the underlying goals or entry points of the agent corre-290

late with superficial features of the stimuli, such as the proximity of the cookie291

crumbs to different doors or goals. If this is the case, then participants may292

have been able to infer agents’ entry points and goals without performing any293

form of event reconstruction. We tested this possibility through a multinomial294

logistic regression trained to predict participant goal inferences as a function295

of the distance between the pile of cookie crumbs and each goal, the average296

distance between the pile of cookie crumbs and each door, the number of doors,297

and all of their interactions. To train this model, we transformed participant298

judgments into a one-hot vector, marking 1 for the goal with the highest prob-299

ability and 0 for the rest, and implemented LASSO regularization (Tibshirani,300

1996) to avoid overfitting. We generated the alternative model’s predictions in301

a leave-one-out fashion—that is, the predictions for each trial consisted of the302

output of a regression trained on all remaining trials.303

Even though this alternative model was trained on the qualitative structure304

of participant judgments, it nonetheless only produced a correlation of r = 0.49305

(95% CI: 0.30−0.63) with participant judgments, which was substantially lower306

than the one produced by our model (∆r = 0.46; 95% CI: 0.33 − 0.65). These307

results show that, while superficial features can capture the broad structure of308

participant judgments, they fail to do so at our model’s level of granularity,309

further suggesting that people’s inferences were centered on a form of Bayesian310

event reconstruction.311

4. Experiment 1b312

Experiment 1a showed initial evidence for our model in a situation where313

people had no prior information about the agent. In many cases, however,314

people have prior knowledge about others, and this information affects their315

inferences. In Experiment 1b, we therefore tested if our model continued to316

capture participant inferences in a context where people were given prior in-317

formation about the agent’s behavior. This study was pre-registered; all study318

12



materials can be found at https://osf.io/q3ct5/.319

4.1. Participants320

160 English-speaking participants were recruited using Prolific (M = 33.49321

years, SD = 11.36 years).322

4.2. Stimuli323

Stimuli consisted of 16 gridworld images, evenly divided across a door prior324

and a goal prior condition. Each gridworld was similar to those in Experiment325

1a, with the difference that each trial now included prior information about326

an agent’s behavior. In the door prior condition, each gridworld contained327

nine red ‘X’ markers, distributed across the doors. These markers represented328

the number of times the agent previously entered through each door. In the329

goal prior condition, each gridworld contained nine red ‘X’ markers, distributed330

across the three goals. These markers represented the number of times the agent331

previously pursued each goal.332

To construct the stimuli for the goal prior condition, we first selected four333

gridworlds from Experiment 1a’s partial certainty condition, and four grid-334

worlds from Experiment 1a’s uncertain condition (with respect to goal in-335

ferences). For each selected gridworld, we considered four possible prior dis-336

tributions over the goals: {(3, 3, 3), (6, 2, 1), (1, 6, 2), (2, 1, 6)}. Because337

this condition consisted of eight gridworlds, each possible prior distribution was338

randomly assigned to one gridworld from the partial certainty set and to339

one gridworld from the uncertain set. This assignment was randomized across340

participants to ensure an equal amount of data for every possible combination341

of gridworld and prior distribution (resulting in a total of 8 × 4 = 32 possible342

combinations).343

The stimuli for the door prior condition was designed in a parallel way. We344

first selected four gridworlds from Experiment 1a’s partial certainty con-345

dition, and four gridworlds from Experiment 1a’s uncertain condition (this346

time with respect to door inferences). Because all gridworlds from the partial347

certainty condition had three doors, we used the same set of priors and assign-348

ment procedure used in our goal prior condition described above. By contrast,349

all gridworlds from the uncertain condition had two doors. The priors for350

these trials were therefore sampled from the set {(5, 4), (5, 4), (7, 2), (2, 7)}.1351

1The pre-registered duplication of (5, 4) in the prior set was accidental, as it was meant to
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4.3. Procedure352

The procedure was nearly identical to Experiment 1a, except that partici-353

pants were also taught how to read the prior information. Participants were told354

that, in each gridworld, they would see the agent’s entry point or goal (depend-355

ing on condition) for the agent’s nine previous visits, and their task was to infer356

the agent’s entry point and goal for the tenth event. After the introduction,357

participants completed a questionnaire that ensured they read and understood358

the instructions. Participants that failed at least one question were redirected359

to the beginning of the instructions and given a second chance to participate in360

the study. Participants that failed the questionnaire twice were not permitted361

to participate in the study.362

Participants completed all 16 trials in two experimental blocks, one for the363

door prior condition and another for the goal prior condition. Experimental364

block order and within-block trial order were randomized across participants.365

The prior information on each trial was determined by one of four distributions366

(see Stimuli). On each trial, participants answered a multiple-choice attention-367

check question (“Which corner is the farthest walk from Door 1? If there is368

more than one correct answer, just choose one of them.”) and were asked to369

infer the agent’s goal (“Which corner is the person going for?”) using three370

continuous sliders, one for each goal (each ranging from 0, labeled as “definitely371

no,” to 1, labeled as “definitely”), and asked to infer the agent’s entry point372

(“Which door did they come from?”) using one slider per door (each also ranging373

from 0, labeled as “definitely no,” to 1, labeled as “definitely”). Participants374

were allowed to submit their responses for each trial only when they correctly375

answered the attention-check question. Otherwise, participants were prompted376

to “please pay attention and try again.”377

4.4. Model Predictions378

Model predictions were obtained in the same way as Experiment 1a, with379

the difference that the prior distribution over goals and doors was based on380

agents’ prior behaviors. To achieve this, we began with a uniform distribution381

over goals and doors for every gridworld, and updated each distribution through382

Bayes’ rule based on the prior behavior (i.e., the nine observations) shown in the383

gridworld, using the generative process specified in our model (i.e., by assuming384

be (4, 5). This affected only 4 of the 64 possible gridworld-by-prior tests, and our experiment
continues to have the necessary variability to compare participants to our model.

14



r = 0.91 (95% CI: 0.89 - 0.93)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Model Predictions

Pa
rti

ci
pa

nt
 J

ud
gm

en
ts Inference Type:

Entrance

Goal

Prior Manipulation:
Entrance

Goal

Experiment 1b Results

Figure 4: Results from Experiment 1b. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. Color indicates
inference type, shape indicates condition, and the dotted line shows the best linear fit with
95% confidence bands (in light gray).

that agents probabilistically choose the goal with the highest utility, subject to385

a softmax process with temperature τ = 0.1). The resulting distributions were386

then set as the prior distributions in the study.387

4.5. Results388

Data was analyzed in the same way as Experiment 1a. Each participant’s389

judgments were first normalized within-trial (such that every distribution over390

goals or doors added up to 1) and then averaged across participants for each391

condition. Figure 4 shows the results from Experiment 1b. Overall, our model392

showed a correlation of r = 0.91 (95% CI: 0.89 − 0.92) with participant judg-393

ments, and the strength of the model fit was similar for the goal prior condition394

(r = 0.91; 95% CI: 0.89 − 0.93) and the door prior condition (r = 0.90; 95%395

CI: 0.86 − 0.92). Critically, these inferences once again revealed that partici-396

pants produce graded patterns of confidence across trials, as predicted by our397

model. Together, these results show that people, like our model, can integrate398

prior information about how an agent behaved to reconstruct their actions given399

indirect physical evidence.400
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5. Experiment 2401

In Experiment 1, we found that people can infer where an agent was going402

and where they came from, all from a single piece of indirect evidence about403

their presence. Participant judgments were quantitatively predicted by a model404

centered on an ability to reconstruct what happened. If our account is correct,405

then people should also be able to explicitly reconstruct the actions that an406

agent took in a way similar to our model. We test this prediction in Experiment407

2. This study was pre-registered; all study materials can be found at https:408

//osf.io/q3ct5/.409

5.1. Participants410

40 U.S. participants (as determined by their IP address) were recruited using411

Amazon Mechanical Turk (M = 38.25 years, SD = 11.02 years).412

5.2. Stimuli413

The stimuli were the same as those from Experiment 1a (see Figure 1a for414

examples and Figure 3 for schematic versions).415

5.3. Procedure416

Participants read a brief tutorial that explained the logic of the task. Par-417

ticipants were then taught how to draw their paths. After the introduction,418

participants completed a questionnaire that ensured they read and understood419

the instructions. Participants that failed at least one question were redirected420

to the beginning of the instructions and given a second chance to participate in421

the study. Participants that failed the questionnaire twice were not permitted422

to participate in the study.423

Participants completed all 23 trials in a random order. On each trial, partic-424

ipants were asked to infer the path they thought the agent took, given the pile425

of cookie crumbs. Participants generated their paths by sequentially clicking426

on the squares they believed the agent walked through. Participants were only427

allowed to proceed when they had successfully generated a valid path, which428

consisted of paths that started at a door, ended at a goal, and passed through429

the pile of cookie crumbs. Participants were allowed to reset the drawn path as430

many times as they wished.431
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5.4. Model Predictions432

To evaluate the participant-generated path reconstructions, we used our433

framework to calculate434

p(t|s) ∝ p(s|t)p(t), (4)

where p(s|t) is the likelihood of a trajectory t generating scene s and p(t) is the435

prior over possible trajectories. Here, p(s|t) = 1/|t| (like in Equation 2) and436

p(t) is obtained by marginalizing over agents’ potential goals and entry points,437

as follows:438

p(t) =
∑
d,g

p(t|d, g)p(d, g). (5)

5.5. Results439

Our computational framework enables us to calculate the probability as-440

signed to each path generated by participants. However, directly interpret-441

ing these probabilities is difficult, as they are sensitive to the length of the442

path and to the number of competing paths that fulfill a goal efficiently. To443

make our results easier to interpret, we compared our model’s evaluations of444

the participant-generated path reconstructions with that of a baseline model.445

This baseline model used a uniform transition function over all actions, exclud-446

ing the one that would generate a transition to the previous state (to prevent447

infinite back-and-forth loops). For every participant, we computed the Bayes448

factor for each of their reconstructed paths by dividing the probability of each449

path, as predicted by our model (i.e., p(t|s)), by the probability predicted by the450

baseline model. A Bayes factor greater than one would indicate that our model451

explains a participant’s reconstructed path better than the baseline model; a452

Bayes factor less than one would indicate that the baseline model explains a453

participant’s reconstructed path better than our model.454

Our model outperformed the baseline model on all trials. The average Bayes455

factor in our experiment was 16935.33 (lowest factor = 7933.79; highest factor456

= 84383.12), meaning that our model was, on average, much more likely to457

produce the participant-generated path reconstructions relative to the baseline458

model (t(39) = 9.10, p < 0.001 using a Bayes factor of 1 as the reference level).459

Figure 5 shows trial-by-trial results from Experiment 2. Each trial is pre-460

sented twice, with our model’s path reconstructions on the left and participant-461
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Figure 5: Comparison of reconstructed paths generated by our model and participants in
Experiment 2. From left to right, each column of subplots corresponds to the high certainty,
high negative certainty, partial certainty, and uncertain trials for goal inferences,
respectively. (a) Results for trials that only had one door. (b) Results for trials that had
more than one door. From top to bottom, each row of subplots corresponds to the high
certainty, high negative certainty, partial certainty, and uncertain trials for door
inferences, respectively. The goals A, B, and C are indicated by the blue, orange, and green
squares, respectively. The doors are sequentially numbered in a clockwise order, with door 1
starting from the top (or from the right if there is no top door). Walls are marked as dark
gray squares and the pile of cookie crumbs are indicated by the brown squares. Each line
represents a reconstructed path, color-coded to indicate time, moving from light orange to
dark red (for participants) or light green to dark blue (for the model).
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generated path reconstructions on the right. All paths are color-coded to in-462

dicate time (with darker colors occurring later in time). For both our model463

and participants, the higher path density indicates where the majority inferred464

the agent to have traveled. As this figure shows, the distribution of participant-465

generated path reconstructions largely matched those generated by our model466

(although participants were more likely to generate suboptimal paths).467

6. Do explicit event reconstructions in Experiment 2 predict infer-468

ences from Experiment 1?469

The previous results showed that that people can not only reconstruct agents’470

actions, but do so in a way similar to our model. According to our proposal, this471

event reconstruction underlies people’s capacity to infer agents’ goals and entry472

points in Experiment 1. If this is the case, then the path reconstructions from473

Experiment 2 should have predictive power over the inferences that participants474

made in Experiment 1. To test this possibility, we extracted the goals and475

doors from the participant-generated path reconstructions. To achieve this, we476

calculated the proportion of paths that originated from each possible entrance,477

and the proportion of paths that reached each possible goal, and compared these478

values to the corresponding goal and door inferences from Experiment 1a. Figure479

6 shows the results from this analysis. Overall, the goals and doors extracted480

from the participant-generated path reconstructions showed a correlation of r =481

0.89 (95% CI: 0.83− 0.92) with the inferences participants made in Experiment482

1a, and the strength of this fit was similar when looking only at goals (r = 0.88;483

95% CI: 0.80−0.93) or doors (r = 0.90; 95% CI: 0.82−0.95). Furthermore, when484

we compared these extracted goals and doors against our model’s predictions in485

Experiment 1a, we found a correlation of r = 0.86 (95% CI: 0.79− 0.91), and a486

similar fit when looking only at goals (r = 0.85; 95% CI: 0.76 − 0.91) or doors487

(r = 0.88; 95% CI: 0.78− 0.93).488

Critically, participants in Experiment 2 could only generate a single path per489

trial. By combining the paths of multiple participants, we were able to reveal490

distributions over goals and doors that quantitatively resembled the inferences491

participants made in Experiment 1a. The fact that these distributions predicted492

inferences from Experiment 1a suggests that generated paths were samples from493

the posterior distribution (rather than maximum likelihood or maximum a pos-494

teriori estimates, which would not contain enough information to reconstruct495

the full probability distribution over inferences). This analysis suggests that496
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participants in Experiment 2 had access to and sampled paths in accordance to497

these goal and door distributions.498

r = 0.89 (95% CI: 0.83 − 0.92)
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Figure 6: Comparison between the extracted goals and doors from Experiment 2 and the
participant inferences from Experiment 1a. Color indicates inference type and the dotted line
shows the best linear fit with 95% confidence bands (in light gray).

7. Experiment 3499

Experiment 1 showed that people can infer an agent’s goals and origins, and500

that these inferences exhibit the quantitative structure predicted by a model of501

event reconstruction. Experiment 2 further showed that people could explicitly502

reconstruct the paths in a way similar to our model. In Experiment 3, we test503

a further prediction of our account: If our model of event reconstruction is504

correct, then people should not only be able to infer a single agent’s probable505

actions and goals, but also be able to estimate how many agents might have506

been in a room, based on how many path reconstructions are needed to explain507

a given scene. This study was pre-registered; all study materials can be found508

at https://osf.io/q3ct5/.509

7.1. Participants510

40 U.S. participants (as determined by their IP address) were recruited using511

Amazon Mechanical Turk (M = 37.62 years, SD = 11.94 years).512
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7.2. Stimuli513

Stimuli consisted of 15 gridworld images that were similar to those in Exper-514

iment 1, with the difference that each trial now has two piles of cookie crumbs515

instead of one (see Figure 7 for examples). Our stimuli set was designed to516

capture different types of inferences that our model supports. Specifically, we517

designed three different trials for each of the following possible inference pat-518

terns: high certainty that one agent was in the room (definitely one trials),519

partial certainty that one agent was in the room (probably one trials), uncer-520

tainty whether it was one or two agents in the room (uncertain trials), partial521

certainty that two agents were in the room (probably two trials), and high522

certainty that two agents were in the room (definitely two trials).523

(c)

(a) (b)

(d)

Figure 7: (a-d) Example stimuli from Experiment 3 for definitely one, probably one,
probably two, and definitely two trials, respectively (see Experiment 3 Stimuli for details).
Potential goals are positioned in the corners, labeled alphabetically, and color-coded. Doors
are shown in yellow and coded numerically. Walls are shown in dark gray. Each trial included
two piles of cookie crumbs positioned in various parts of the room.

7.3. Procedure524

The procedure was nearly identical to Experiment 1a, except that partici-525

pants were instead shown two piles of cookie crumbs and were told that their526

task was to infer if one or two agents had been in the room. After the in-527

troduction, participants completed a questionnaire that ensured they read and528

understood the instructions. Participants that failed at least one question were529

redirected to the beginning of the instructions and given a second chance to530

participate in the study. Participants that failed the questionnaire twice were531

not permitted to participate in the study.532
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Participants completed all 15 trials in a random order. On each trial, par-533

ticipants answered a multiple-choice attention-check question (“Which corner534

is the farthest walk from Door 1? If there is more than one correct answer,535

just choose one of them.”) and were asked to infer how many agents were in536

the room (“How many people were in the room?”) using a continuous slider537

(ranging from 0, labeled as “definitely one,” to 1, labeled as “definitely two”).538

Participants were allowed to submit their responses for each trial only when539

they correctly answered the attention-check question. Otherwise, participants540

were told to “please pay attention and try again.”541

7.4. Model Predictions542

To predict how many agents might have been in a scene we computed the543

probability that a agents were in scene s, through544

p(a|s) ∝ p(s|a)p(a), (6)

where p(a) is a prior over the number of agents that could have been present.545

In natural contexts, this prior should reflect the statistics of how often different546

agents might interact in different environments. To model our experiment,547

however, we used a simple uniform prior over the possibility of having one548

or two agents. This prior was then weighted by the likelihood of a particular549

number of agents a generating scene s, given by550

p(a|s) ∝


∑

t∈T p(s|t)p(t) a = 1∑
t1,t2∈T p(s|t1, t2)p(t1)p(t2) a = 2

(7)

To compute the likelihood that two trajectories explain the scene (i.e., p(s|t1, t2)),551

we modified our generative model to sample two sets of entry points, goals,552

and trajectories at a time instead of one, where the likelihood is defined as553

1/(|t1| + |t2|) if there was a scene match (i.e., both piles of cookie crumbs lie554

within both trajectories, and each trajectory was responsible for one of the piles)555

and 0 otherwise.556

7.5. Results557

Participant judgments were averaged across trials and compared against our558

model’s predictions. Figure 8 shows the results from Experiment 3. Partici-559

pant’s relative confidence about the number of agents in the scene was quan-560

titatively similar to our model’s predictions, yielding a correlation of r = 0.76561
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r = 0.76 (95% CI: 0.43 − 0.91)
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Figure 8: Results from Experiment 3. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. The dotted line
shows the best linear fit with 95% confidence bands (in light gray).

(95% CI: 0.43 − 0.91). As before, participants’ pattern of data did not only562

qualitatively identify the best inference, but also revealed a graded pattern of563

confidence that is broadly consistent with event reconstruction.564

Figure 9 shows our model’s results as a function of each trial. In each subplot,565

the image at the top shows an abstract schematic of the trial, with both piles566

of cookie crumbs marked as brown squares. From left to right, each column567

corresponds to the definitely one, probably one, uncertain, probably568

two, and definitely two trials, respectively. This figure reveals how our569

model quantitatively predicts participant judgments across the various trials570

and levels of uncertainty.571

Interestingly, the model fit in Experiment 3 was lower relative to Experi-572

ment 1. Under our account, this difference may arise because Experiment 3573

requires reconstructing paths for a single agent, reconstructing paths for multi-574

ple agents, and weighting their relative probability of generating the observed575

scene. Consistent with this, we found higher mismatches between our model576

and participants in the probably trials (MSE = 0.053) over the definitely577

(MSE = 0.021) and uncertain trials (MSE = 0.019). That is, participants578

struggled more in trials that relied on a capacity to make precise comparisons579
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between the number of single-agent reconstructions and two-agent reconstruc-580

tions.581
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Figure 9: Detailed results from Experiment 3. From left to right, each column corresponds
to definitely one, probably one, uncertain, probably two, and definitely two tri-
als, respectively. Red bars represent mean participant judgments and blue bars represent
our model’s predictions. Error bars on participant judgments represent 95% bootstrapped
confidence intervals.

As in Experiment 1a, we also evaluated whether participant judgments could582

be explained by superficial features of the stimuli rather than via event recon-583

struction. We tested this possibility through a logistic regression trained to584

predict participants’ distribution over the number of agents they thought were585

in the room as a function of the distance between each goal and each pile of586

cookie crumbs, the average distance between each pile of cookie crumbs and the587

doors, the number of doors, and all of their interactions. We trained and tested588

this alternative model in the same way as the one described in Experiment 1a.589

Even though this alternative model had access to the qualitative structure of590

participant judgments, it nonetheless produced a correlation of r = 0.19 (95%591

CI: −0.30 − 0.66) with participant judgments, which was substantially lower592

than the one produced by our model (∆r = 0.58; 95% CI: 0.12 − 1.17). These593

results extend our findings from Experiments 1 and 2, suggesting that people594

can not only infer an agent’s goals and origins based on indirect evidence of595

their presence, but also whether multiple agents may have been present in a596
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given scene.597

8. Discussion598

Research on human action understanding has historically focused on how we599

infer the goals and mental states of agents whose behavior we are observing. Our600

results show that our capacity to reason about others goes beyond face-to-face601

interactions and includes nuanced social inferences from simple physical scenes.602

In Experiment 1, we showed that people can infer an agent’s goals (i.e., where603

an agent was going) and past actions (i.e., where an agent came from) from a604

single piece of indirect evidence about their presence. The tight correspondence605

between our model’s predictions and the fine-grained structure of participant606

judgments suggested that these inferences were structured around a form of607

mental event reconstruction: people infer the actions that an agent took, and608

use this reconstructed behavior to make richer social inferences. Experiment609

2 showed further support for our proposal, revealing that people can explicitly610

reconstruct the actions that someone took based on indirect physical evidence,611

in a way similar to our model. Furthermore, these explicit reconstructions pre-612

dicted participant inferences in Experiment 1, showing a direct link between613

people’s ability to reconstruct behavior from physical evidence, and the corre-614

sponding social inferences that they make. Finally, in Experiment 3, we found615

that people can also infer how many agents were in a given scene, based on the616

number of paths they needed to reconstruct to explain the scene.617

8.1. What cognitive capacities are required for event reconstruction?618

Our computational model formalized social inferences as the process of re-619

constructing behaviors that explain the observed physical evidence. Our model’s620

quantitative fit with participant judgments, and the failure of our alternative621

models (despite being trained on participant judgments), suggests that people622

were performing similar computations. In particular, the similarity between the623

paths generated by our model and those drawn by participants (see Figure 5)624

suggests that social inferences from physical evidence are tied to a form of event625

reconstruction.626

The heart of our proposal—expressed in Equation 2 (see Section 2)—posits627

that event reconstruction depends on two different cognitive capacities. The628

first is a model of how agents act in the world. The second is a model of how629

agents’ actions leave observable traces in the environment.630
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In our model, the first capacity consisted of a simple expectation that agents631

navigate towards their goals as efficiently as possible, given the environmental632

constraints. This expectation, known as a teleological stance (Gergely, 2003;633

Gergely & Csibra, 1997), has been hypothesized to be a precursor to mental-634

state reasoning, supporting simple social inferences without requiring active635

representations of other people’s minds (Gergely & Csibra, 2003). From this636

standpoint, our computational model shows that a full-fledged Theory of Mind637

is not necessary for performing social reconstructions from physical evidence,638

and a teleological stance can suffice.639

At the same time, agents with a Theory of Mind might be able to derive640

richer social inferences. To illustrate this, imagine that a valuable object that641

was hidden in a closet in someone’s house has gone missing. Suppose also that642

drawers and cabinets throughout the house were left open, but nothing else had643

been taken. In this situation, a pure teleological stance could reveal that the644

thieves navigated through the house opening drawers and cabinets. However,645

a teleological stance alone would end there, failing to reveal why the thieves646

pursued these goals. This event, analyzed through a Theory of Mind, however,647

would reveal that the thieves knew that the valuable object was in the house,648

did not know its exact location, and therefore searched the house to find it.649

This example raises the possibility that a non-mentalistic teleological stance650

enables people to reconstruct the actions that an agent took, by assuming that651

they navigate efficiently in space. Once these actions have been reconstructed,652

our Theory of Mind might enable us to extract the complex mental states that653

can explain why the agent took the actions that they did. This is a direction654

that we hope to explore in future work.655

The second capacity implemented in our model is an understanding of how656

actions leave observable traces in the environment. Our model therefore posits657

that event reconstruction requires an ability to associate different actions with658

their corresponding observable traces. Our model used a highly simplified set-659

ting where the observable evidence consisted of a small pile of cookie crumbs. In660

more realistic situations, the types of traces that agents leave behind can be rich661

and variable, from unambiguous cues like foot tracks on the ground, to more662

subtle ones, like finding a single apple tree with no apples, in a row of trees full663

of ripe apples. This suggests that people’s capacity to reconstruct behavior is664

simultaneously powered and constrained by their knowledge of the relationship665

between actions and physical traces.666

While our work focused on adults, some recent research suggests that these667
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capacities might emerge in early childhood. In particular, preschoolers can judge668

what types of physical constructions (such as different types of block towers)669

require more physical effort (Gweon et al., 2017), suggesting an early under-670

standing between actions and physical outcomes. Moreover, children can also671

determine what actions are more likely to leave physical traces. For example,672

lifting an upside-down cup filled with rice will likely leave visible rice grains673

after the cup has been repositioned. But it is possible to lift and reposition674

an upside-down cup filled with a few large rocks without leaving any evidence675

behind (Jacobs et al., 2021). Recent research has found that children can even676

associate physical outcomes with the corresponding mental states of the agent677

who generated them (Pelz et al., 2020). Finally, and most strikingly, young678

children can infer the transfer of ideas by seeing how different agents create679

artifacts (Pesowski et al., 2020), a capacity known as “intuitive archaeology”680

(Hurwitz et al., 2019; Schachner et al., 2018). While these results point towards681

an early understanding of the relation between the social and physical world, to682

our knowledge, it is an open question whether these inferences are also linked683

to some form of explicit or implicit event reconstruction.684

Finally, at the highest level, our work builds on the idea that human cog-685

nition is structured around mental models (also called intuitive theories) of686

the world (Tenenbaum et al., 2011), including intuitive theories of the physical687

world (Battaglia et al., 2013) and of others (Jara-Ettinger et al., 2020). Follow-688

ing this tradition, our model posits that people have (i) a causal understanding689

of how goals lead to actions and how actions leave observable traces, and (ii)690

a mechanism for inverting this causal model, enabling people to move from ob-691

served traces to the underlying goals. In our model, the inversion mechanism692

was implemented as Bayesian inference via Monte Carlo simulations. This ap-693

proach is consistent with growing evidence that action-understanding involves694

some form of Bayesian inference (Baker et al., 2017; Ullman et al., 2009; Jara-695

Ettinger et al., 2020). Nonetheless, our work only tested our model at Marr’s696

computational level of analysis (Marr, 1982), and it does not imply that peo-697

ple are specifically using a Monte Carlo based approach to implement Bayesian698

reasoning. Indeed, related work has found that this type of inference can be699

approximated via simpler strategies (Bonawitz et al., 2014), and people’s infer-700

ences in our task might not have required active sampling in participants. At701

the same time, work in intuitive physics has found some evidence of active sam-702

pling in physical reasoning, opening the possibility that this extends to social703

reasoning as well (Hamrick et al., 2015). These are questions that we also hope704
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to explore in future work.705

8.2. Study limitations706

Our work has three main limitations. First, our model and experiments707

focused on highly simplified events. In more realistic situations, the space of708

goals that an agent might pursue, and the physical evidence they leave behind709

is substantially more complex than what our two-dimensional gridworlds can710

capture. To reason about a chewed-up pencil, for example, our model would711

require a more extensive description of human behavior to compute how an712

anxious mental state shapes an agent’s action space, and how the resulting713

candidate actions (e.g., chewing) leave traces in the environment. Our proposed714

model does not currently support social inferences at this level of complexity,715

and it is an empirical question whether our approach could capture human716

reasoning in these more naturalistic events.717

One way in which our framework could tackle richer inferences is by using a718

full-fledged model of intuitive physics to evaluate how actions leave traces in the719

environment. A recent body of work in cognitive science has found that human720

intuitive physics is instantiated as a physics engine that supports rich probabilis-721

tic simulations of how objects and forces interact in the environment (Fischer722

et al., 2016; Battaglia et al., 2013), and that physical simulations might underlie723

how we reason about the interaction between agents and objects (Yildirim et al.,724

2019). Thus, using a physics engine to simulate how the forces that agents apply725

to the world leave observable traces might enable our computational framework726

to handle more complex physical events that contain social information.727

Our second main limitation lies in the narrow range of inferences that we728

asked people to make: inferences about where an agent was going, where they729

entered from, and how many agents were involved. As noted above, all of these730

inferences can be explained through a teleological stance (Gergely & Csibra,731

2003). Consequently, our work does not test the extent to which people can732

infer complex mental states or personality traits from physical evidence. Recent733

work has found that people can indeed make rich communicative inferences734

from physical arrangements of objects (Lopez-Brau & Jara-Ettinger, 2020; Sarin735

et al., 2021); however, in this work, the position of the objects unambiguously736

revealed the agent’s actions (they positioned the objects where they were most737

visible to others). This work therefore leaves open whether the capacity to infer738

these types of mental states extends to events where people must perform more739

complex forms of event reconstruction. In future work, we hope to incorporate740
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richer models of mental-state inference to test people’s capacity to infer mental741

states such as beliefs, desires, knowledge, and intentions from physical evidence742

(Jara-Ettinger et al., 2020; Baker et al., 2017).743

Our third limitation is that our work used simple events with minimal social744

context: participants had nearly no information about the agent, and the goals745

consisted of simple abstract squares. This enabled us to test people’s capacity746

to reconstruct events in a controlled manner. In more naturalistic situations,747

however, the content of the goals often reveals important information that can748

help people build more nuanced inferences. Imagine, for instance, that one of749

the squares in our stimuli was a work desk, the second one was a stationary750

bicycle, and the third one was a TV. With this context, the physical trace751

would not only allow people to infer the agent’s goal, but also richer aspects752

of their personality. Relatedly, when more context is available, people also rely753

on inferred stereotypes to attribute dispositions (Gosling et al., 2002, 2008).754

These richer context-based inferences were not captured by our work, and are755

a critical challenge towards building computational models that fully capture756

human social reasoning.757

Our work also leaves a critical question open. Our experiments focused on758

situations where people were explicitly told that an agent was previously present.759

Our work therefore does not speak to how people use physical information to760

infer that an agent was present in the first place. One possibility is that people761

engage in a pervasive and constant social analysis of all physical scenes. Doing762

so, however, might be prohibitively costly and unnecessary. As such, it is likely763

that people are attuned to the physical signatures that reveal the presence of an764

agent, which then trigger social reasoning from physical evidence. Consistent765

with this second view, research suggests that people can infer the presence of an766

agent based on apparent order (Newman et al., 2010; Keil & Newman, 2015) and767

on a sensitivity to human-like errors that people leave behind when interacting768

with the world (Lopez-Brau et al., 2021). An open question is how the ability769

to detect the presence of an agent interacts with the ability to reconstruct their770

behavior and infer their mental states.771

8.3. Implications and conclusions772

At first glance, our computational framework appears to suggest that any773

creature with some form of näıve psychology and näıve physics ought to be774

able to perform social inferences from physical evidence (i.e., access to the two775

key components of Equation 2). This may not be the case, however, because776
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our model also requires an ability to transfer information across these intuitive777

theories (reconstructing behavior via näıve psychology and evaluating how they778

compare to the environment via näıve physics). While this is an open empirical779

question, research suggest that intuitive physics and intuitive psychology rely780

on separate neural circuitry (Fischer et al., 2016; Saxe & Powell, 2006), leaving781

open the question of how these two intuitive theories might work in tandem to782

reconstruct other people’s behavior from physical evidence.783

One interesting case that suggests such a feat might not be simple comes from784

research with vervet monkeys. Vervet monkeys have an astonishing degree of785

social intelligence, including a nuanced repertoire of vocal calls to signal different786

types of predators, each associated with different escape responses (Seyfarth787

et al., 1980a,b). Yet, vervet monkeys routinely fail to identify predators from788

indirect physical evidence. For instance, vervet monkeys fail to infer that a789

python is hiding in a nearby bush when they encounter the distinct tracks that790

they leave behind. Similarly, vervet monkeys also fail to infer the presence791

of a leopard upon encountering a gazelle carcass on a tree (where leopards792

usually drag their prey so they can feed in solitude; Cheney & Seyfarth, 1985).793

Critically, this failure appears to persist even after vervet monkeys have, in794

past events, seen the direct association between the physical evidence and the795

predator (Cheney & Seyfarth, 1985, 2008). These results might point to the796

possibility that the form of event reconstruction that we present here might797

require capacities that go beyond simple physical and social reasoning, as they798

involve an ability to combine the two capacities to derive richer inferences than799

would be otherwise possible.800

Overall, our results illustrate the sophistication of human social intelligence.801

Beyond being able to make social inferences about agents that we are personally802

interacting with, we can also make social inferences about agents we have never803

encountered, just from minimal indirect evidence that reveals their presence.804

Researchers have long argued that humans are unique in their ability to reason805

about and navigate the social world (Herrmann et al., 2007). Our work shows806

that this ability is not confined to social interactions, but can fundamentally807

affect how we reason about the physical world, allowing us to see social meaning808

embedded in physical structures, like a pile of rocks, where other animals may809

see merely just that: a pile of rocks.810
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