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People have a remarkable capacity to reason about others’ mental states—their

beliefs, desires, and goals—from simply observing their behavior. However, this ca-

pacity extends beyond scenarios where other people are directly observable: A coat

hanging over a chair, traffic cones blocking a lane on the road, and belt barriers at the

airport all elicit rich social inferences about an agent, despite appearing as nothing

more than physical objects. While previous research has documented our capacity

to extract social information from physical objects, little research has investigated

the computations and representations that underlie this capacity. In this thesis, I

propose that three interconnected inferences support our capacity to build and rea-

son about social representations from physical objects. I elucidate the mechanisms

behind these inferences and show how they can be explained through a combination

of our specialized cognitive capacities to process physical and social information.
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Chapter 1

Introduction

Imagine hiking along a trail in a mountainous forest. Along your trek, the trail
becomes progressively less marked, making it difficult to determine where the path
continues. As you begin to question whether you went the wrong way, you notice a
small stack of rocks, about three feet in height (Figure 1.1). Intuitively, this simple
arrangement of objects immediately grabs your attention, not because of its precarious
assembly, but because it reveals that someone was here and stacked the rocks (as rocks
cannot stack naturally, bar an appropriate causal process, such as residing at the base
of a cliff). Beyond being able to detect the involvement of an agent, you can also infer
how the agent assembled it (e.g., by stacking one rock on top of the other, favoring
larger and flatter rocks at the base), how long it took to build, and how much effort
was involved. Finally, you can even infer that the agent did so with the purpose of
communicating their mental states (e.g., to communicate where the trail continues).

Similar experiences are ubiquitous in our everyday life: rope surrounding a patch
of grass on a golf course tells us not to walk through, traffic cones on the road guide
where we drive our cars, and stanchions at a movie theater mean we should form a
line (see Figure 1.2 for more examples). While these examples are widespread, they
pose a challenge to existing theories of mental representations in cognitive science,
which emphasize that social and physical reasoning are separate cognitive systems. In
infants, these systems are isolated, encapsulated, and form a subset of our core knowl-
edge (Spelke, 2003; Spelke and Kinzler, 2007), and, in adults, they are instantiated by
different neural circuity (Saxe and Kanwisher, 2003; Fischer et al., 2016). Moreover,
previous work suggests that social reasoning might be supported by bottom-up pro-
cesses that directly detect agents in our environment, such as through a sensitivity for
faces or eyes (Johnson et al., 1991; Simion et al., 2001; Colombatto and Scholl, 2022).
However, as the examples in Figure 1.2 show, people can also spontaneously detect
that physical objects contain social information, enabling further social reasoning
about the agent that was involved.

Consistent with this, past research has shown that people have a rich understand-
ing of what physical environments reveal about others (Gosling et al., 2002; Hurwitz
and Schachner, 2020). For instance, people can infer others’ actions and goals from
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Figure 1.1: A stack of rocks also known as a cairn. These structures have historically
served as landmarks for a variety of purposes (e.g., burials, hunting, storage). Today they
are typically used as trail markers.

indirect physical evidence of their presence (Lopez-Brau et al., 2022) and estimate
the effort involved in moving and manipulating objects (Yildirim et al., 2019). These
capacities also emerge early in development, with children drawing surprisingly rich
inferences from physical evidence, ranging from inferences about what actions an
agent took (Jacobs et al., 2021) and what they knew (Pelz et al., 2020) to inferences
about even richer social information, such as whether two people transmitted ideas
(Pesowski et al., 2020) and have shared interests (Pesowski et al., 2021). While this
large body of work has documented our capacity to infer and reason about social
information from physical objects, little work has explored what computations and
representations support this capacity.

In this dissertation, I propose that our capacity to build and reason about the
social representations of physical objects is supported by three interconnected in-
ferences. First, from these objects we are able to detect that they contain social
information—it is obvious that an agent was involved in arranging them and not a
natural force, like the wind. This is critical for knowing when to reason about another
agent, as opposed to doing so for every object in our visual experience. I review this
capacity in Chapters 2 and 3. Second, we can mentally reconstruct how the agent
manipulated the scene. This can be as simple as inferring where an agent was walking
to or from based on mud tracks that they left behind, but can also be as sophisticated
as estimating the time and effort behind a marble sculpture. I review this capacity
in Chapter 4. Finally, we can reason over the agent’s reconstructed actions to infer
their mental states. I review this capacity in Chapter 5. I propose that, together,
these three inferences enable people to embed and extract rich social information
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Figure 1.2: Real-world examples of people using objects to relay social information. (a)
A hat on a chair indicating that someone intends to return. (b) Rope a few inches above
the grass so that people know not to walk through. (c) Chairs along the side of the street
in South Boston to reveal someone shoveled and claimed this parking spot. (d) A traffic
cone in front of some stairs signaling limited access. (e) A bucket along the side of the
street in central Mexico indicating that the parking spot is reserved. (f) An easy-to-cross
fence marking a property limit. (g) A stanchion across a stairwell revealing access may be
restricted to certain individuals. (h) Belt barriers at the airport telling passengers that they
should form a line (and where). (i) An ironing board along the side of the street indicating
that the parking spot is taken. (j) A wooden pole and two small benches in a store in Bolivia
indicating that the owner is not available. (k) A small rope along a sidewalk asking people
not to walk near a construction site. (l) A pair of traffic posts preventing people from using
this walkway.

from the physical world in a way that is uniquely human. In the remainder of this
introduction, I present the theoretical foundation to my proposal (see Table 1.1 for
key concepts), followed by a brief overview of each component inference, and close
with a brief summary of each chapter.

1.1 Intuitive theories

A mainstream idea in cognitive science is that humans are born with core knowledge,
a foundational understanding over several core domains (Spelke, 2003; Spelke and
Kinzler, 2007; Lake et al., 2017). These core domains include number (numerical and
set operations), space (environment geometry and navigation), psychology (agents
and their actions), physics (objects and their mechanics), and, more recently, sociol-
ogy (social groups and their interactions). Critically, each system is encapsulated—
the internal workings of each system are largely inaccessible to other representations
and computations—and isolated—representations constructed by each system do not
readily combine with one another. These core knowledge systems further support our
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Bayes’ theorem: Describes the probability of an event A given prior knowl-
edge of another event B (p(A|B); also known as the posterior or posterior
probability). Mathematically, the posterior is proportional to the likelihood
of the second event given the first event (p(B|A)) multiplied by the proba-
bility of the first event (p(A)).
Inverse planning: In forward planning, agents choose actions according to
their goals, beliefs, and desires. In inverse planning, agents work backwards,
taking observable actions and simulating possible goals, beliefs, and desires
to find the set that best explains the observed data.
Generative models: A model that represents the probabilistic distribution
of some observable data. In this thesis, this is synonymous with the likelihood
term in Bayes’ theorem.
Intuitive theories: Abstract causal mental models that provide under-
standing for phenomena across various domains, such as psychology, physics,
and biology.
Intuitive psychology: The foundational capacity to reason about an
agent’s behavior in terms of their mental states.
Intuitive physics: The foundational capacity to reason about objects and
their physical interactions.
Physics engine: Computer engines that approximately simulate Newtonian
physics in video games and graphics.

Table 1.1

intuitive theories, abstract causal models that guide the interpretation, explanation,
and prediction of relevant phenomena (see Table 1.1). Intuitive theories are similar
to scientific theories, consisting of an ontology of concepts and a system by which
they are related (Wellman, 1992; Carey, 2009; Gerstenberg and Tenenbaum, 2017).
In particular, my proposal focuses on the combination of two intuitive theories—
intuitive psychology and intuitive physics—and how this combination supports our
capacity to reason about social information from physical objects. That two intuitive
theories may work together has interesting implications on our understanding of core
knowledge. I discuss this in the Chapter 6. Before introducing how this combination
might work, I briefly review the empirical and theoretical evidence for each intuitive
theory, including recent attempts to formalize them as computational models.

1.1.1 Intuitive psychology

People have an intuitive understanding of others. Early in development, we expect
others to act efficiently towards their goals, guided by a principle of rational action
(Gergely et al., 1995; Gergely and Csibra, 2003). 15-month-olds start to understand
more complex representations, such as false beliefs (Onishi and Baillargeon, 2005;
Scott and Baillargeon, 2017), and 18- and 20-month-olds understand that other people
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have desires, which form the motivation for their actions, that differ from their own
(Repacholi and Gopnik, 1997; Kushnir et al., 2010). Furthermore, we can invert
this intuitive causal model of others to explain their behavior in terms of their mental
states: their goals, beliefs, and desires (Wellman, 2014; Gopnik et al., 1997). Previous
work suggests that our intuitive psychology is supported by both bottom-up processes,
such as through visual cues to agency (New et al., 2007; Johnson et al., 1991; Troje,
2013; Johansson, 1973, 1976; Colombatto and Scholl, 2022; Scholl and Gao, 2013), and
top-down processes, such as through the use of our mental causal models of others,
also known as our Theory of Mind.

Recent research has attempted to formalized intuitive psychology as Bayesian
inverse planning (Baker et al., 2009; Baker et al., 2017; see Table 1.1). Assuming
that agents act efficiently towards their goals, we can form reasonable expectations for
what actions agents will take given their beliefs and desires. For instance, consider
several food trucks parked on a street. Knowing that someone’s favorite food is
Lebanese makes their next sequence of actions obvious: they will take a path towards
the Lebanese food truck. This action sequence is derived by using our causal model,
here also known as forward planning. However, in many situations, the mental states
are not known and all we have access to is the sequence of actions that an agent took.
To infer someone’s mental states from their behavior, we must invert our causal
model, here also known as inverse planning. In more recent work, it has been shown
that people not only infer others’ mental states from their actions, but also make
graded inferences about the costs and rewards that were involved, known as a naïve
utility calculus (Jara-Ettinger et al., 2016, 2020a). Together, these computational
frameworks form the foundation for social reasoning within the models I propose.

1.1.2 Intuitive physics

Similar to intuitive psychology, people also have an intuitive understanding of physical
objects and their mechanics. Intuitive physics is also available early in development
(Téglás et al., 2011; Spelke and Kinzler, 2007), with infants demonstrating an un-
derstanding of the spatio-temporal principles of cohesion (objects move as connected
and bounded wholes), continuity (objects move on connected, unobstructed paths),
and contact (objects do not interact at a distance; Aguiar and Baillargeon, 1999;
Leslie and Keeble, 1987; Spelke, 1990). While our intuitive understanding of physics
becomes more sophisticated in development, it remains only a rough approximation
to classical or Newtonian physics (Levillain and Bonatti, 2011).

Recent work has attempted to model intuitive physics using a physics engine
(Battaglia et al., 2013). Physics engines are computer engines that simulate New-
tonian physics in video games and graphics using approximate, probabilistic simu-
lations. In this study, people were presented with images of block towers and were
tasked with judging whether it was stable and, if it was not stable, where it would
fall. Their proposed intuitive physics engine framework yielded strong quantitative
fits with participant judgments—even when the mass, shape, and force applied to
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the block towers was varied—revealing how this framework not only affords us the
flexibility to make noisy inferences about physical parameters (e.g., what is the speed
of a car?), but also about entire scenes (e.g., will two cars collide and would a colli-
sion cause collateral damage?). This computational framework supports some of the
physical reasoning within the models I propose.

1.2 Detecting social information from objects

These intuitive theories support reasoning about social and physical entities, but
most of the empirical evidence has focused on how they do so individually rather
than jointly. Before we can reason about the mind behind an object, however, we
must know that there is a mind to reason about in the first place. In the examples
of Figure 1.2, perhaps the most obvious inference we can draw is that an agent
was involved in arranging the scene. Why is this so obvious? One possibility is
that there exist low-level visual cues in the objects that agents interact with that
reveal their involvement. This idea presumes that our visual system functions as
a filter for these low-level visual cues: the traces of agency. By contrast, if these
traces did not receive specialized visual processing, we would be overwhelmed by the
sheer magnitude of objects in our visual environment. A common way to prioritize a
stimulus is through the selective operation known as attention, which acts a filter to
both what we perceive and what we think about (Chun, 2011; Treisman, 2006). The
idea of specialized visual processing for certain types of stimuli is not a new idea—in
fact, decades of work in vision science has shown that our visual system prioritizes
the most social stimuli around: people (New et al., 2007; Johnson et al., 1991; Troje,
2013; Johansson, 1973, 1976; Colombatto and Scholl, 2022; Scholl and Gao, 2013).
If agents receive specialized visual processing, might some form of this specialization
also extend to the traces of agency and, if so, what are the cues?

1.2.1 Cues to agency

Perhaps the most well-studied cue to agency is faces. Our brain devotes an incredible
amount of resources to detecting faces, up to the point of having an entire brain re-
gion specialized for face recognition: the fusiform face area (Kanwisher et al., 1997).
Our proficiency at classifying faces can be partly attributed to the developmental tra-
jectory of this capacity; just 30 minutes after birth, infants already show preferential
tracking of face-like patterns (consisting of an oval with three dots, two for the eyes
and one for the mouth), following a moving face-like pattern farther than other mov-
ing patterns of similar complexity (Johnson et al., 1991). While more recent work has
challenged the three-dot arrangement, it continues to support that infants generally
prefer “top-heavy” geometries (Simion et al., 2001).

The way that people move is also a cue to what and who they are, known as
biological motion (Troje, 2013). Previous work revealed that from a moving arrange-
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ment of fewer than 10 lights, people could perceive a fully coherent shape of a human
figure (Johansson, 1973, 1976). Multiple brain regions are activated during biolog-
ical motion perception, with the primary region being the superior temporal sulcus
(Bonda et al., 1996; Grossman et al., 2000; Grossman and Blake, 2002; Grossman
et al., 2004; Peuskens et al., 2005).

These cues both map onto aspects of the human body (i.e., its shape), however self-
propulsion is one cue to agency that is completely independent from it, and one that
infants and non-human primates also rely on (Premack, 1990; Hauser, 1998; Di Giorgio
et al., 2017). In the seminal study by Heider and Simmel (1944), participants were
presented with a video of several moving shapes, moving in a particular pattern.
Despite having no other information available, people readily interpret these shapes
as agents (e.g., interpreting one as an aggressor), and attribute sophisticated mental
states to them (e.g., dominance). In another study, Gao et al. (2010) found that
participants irresistibly perceived an array of triangles as intentional and goal-directed
when oriented towards them, impairing their performance in interactive tasks. A
related study further showed that even when the triangles were irrelevant to the task,
participants’ visuomotor behavior was still impaired (van Buren et al., 2016). From
this body of work, it is clear that perceiving agency does not require seeing a living
being—or even a proxy to one, as in Troje (2013).

These findings highlight the many ways in which the mind automatically and
irresistibly detects agency (and even intentionality) from visual stimuli consisting of
nothing more than simple shapes. All of this work, however, is about how we directly
detect agents. In the examples presented earlier (Figure 1.2, we instead indirectly
detect that an agent was present, because there is no agent (of any kind) to observe.
This raises the question of whether the capacity to directly detect agents extends to
the ability to infer their involvement from the way they manipulate the environment.

1.2.2 Agency and order

People manipulate their environment in a variety of ways, but generally have a ten-
dency to increase the order within them. We see examples of this in the consistent
timing of a traffic light, changing from red to green (temporal order), the neat spa-
tial arrangement of kitchen tiles inside of a house (spatial order), or in mathematical
constructs, like an infinite series (conceptual order). What is common across these
distinct forms of order is that they all contain regularity. How might order from
regularity reveal the involvement of agents?

Previous work has shown that from a very young age, children understand the
link between agency and order (Newman et al., 2010; Keil and Newman, 2015a). In
Newman et al. (2010), 12-month-old infants were presented with groups of red and
blue blocks and a ball that either had animate features (e.g., eyes) or did not. Infants
would witness either the animate or inanimate ball arrange the group of blocks from
an disordered state (e.g., with the blocks in a haphazard pile) to a ordered one (e.g.,
with the blocks arranged into two neat columns, separated by color). Infants looked
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(a) (b)

Figure 1.3: (a) Example of the contrast between perfect order and order with slight errors.
The grid of circles on the left appear so perfectly made, an agent would require a stencil to
create. The grid of circles on the right, however, are just the kind of thing that an agent
with a pair of scissors would produce. (b) A güiro, a Latin-American instrument often
handmade from either wood or fiberglass, is one of the many real-world examples of subtle
imperfections in art and music.

longer when the inanimate ball was responsible for the state change, but would not
exhibit preferential looking when the animate ball was responsible for the same action.
In related work, 9-month-old infants associated a regular color sequence (e.g., yellow,
yellow, red, yellow, yellow, red) as being the product of a human hand instead of a
mechanical one (Ma and Xu, 2013). Taken together, these findings reveal that even
infants expect animate entities to be “creators of order” and inanimate entities to be
“creators of disorder”.

1.2.3 “Human error” hypothesis

This suggests that a potential cue for the traces of agency is whether or not an
object or environment contains order. However, maximal order sometimes seems
non-agentive, instead likely to be the work of a machine or even a supernatural entity
(Aquinas, 1485; Dawkins et al., 1996). Furthermore, this idea neglects a key signature
of human involvement: the errors introduced by their actions. That is, people cannot
perfectly manipulate their environment, so whenever they act towards their goals,
they leave behind errors.

Suppose that Figure 1.3a is a black piece of construction paper with holes in
it. The holes on the left seem unlikely to have been made by a person (without a
specialized tool). The holes on the right—with many slight imperfections—seem like
just the kind of outcome that we would expect from a person using a pair of scissors.
These kinds of errors make their appearance in other places (e.g., Figure 1.3b). In
folk art and aesthetics, handmade crafts are seen as more valuable, a homage to pre-
industrial societies where knowledge and skills were personal (Oring, 1986). Even
music is rich with subtle imperfections, such that electronic artists add noise to their
tracks to simulate analog instrumentation. The first goal of this thesis is to investigate
if objects containing order—with small imperfections—are prioritized by our visual
system (Chapter 2).
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Figure 1.4: Conceptual representation of our model extension. (a) Traditional belief-desire
psychology framework (Fodor, 1992; Wellman and Bartsch, 1988). Agents form goals on the
basis of their beliefs and desires, and these goals serve as motivation for their actions. (b)
When actions are unobservable, agents must rely on the physical traces that agents leave
behind in order to reconstruct their actions. With these reconstructed actions, agents can
then apply Theory of Mind over them to infer goals, beliefs, and desires.

1.3 Detecting social information through physical r-
easoning

Superficial visual properties might not be the only way to detect whether an object
contains social information. Some objects reveal that an agent was involved by con-
sidering the alternative: Could some natural process do this? That is, are people
first analyzing their environment through physical reasoning and engaging in social
reasoning whenever they detect features of the environment that cannot be explained
by an appropriate natural process?

Consistent with this hypothesis, previous research suggests that violations of
physics trigger an expectation of agency. For instance, after seeing an inert object
fly into a scene, infants expect the presence of an agent in the area where the object
came from (suggesting that they inferred an agent must have thrown the object, as
objects cannot generate their own motion; Saxe et al., 2005). The second goal of this
thesis is to investigate the extent to which physical reasoning aids in our capacity to
detect social information from physical objects (Chapter 3).

1.4 Inferring mental states from objects

Once we know that an object contains social information, we can make further social
inferences about the agent that was involved. Humans possess a specialized cognitive
system to process, understand, and predict each other’s behavior in terms of their
mental states, known as a Theory of Mind (Gopnik et al., 1997; Wellman, 2014).
Equipped with this intuitive theory, people can infer the unobservable mental states
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that causally give rise to other people’s observable behavior.
Despite the power of this cognitive capacity, it alone cannot explain how we make

mental-state inferences from objects because the actions that normally serve as input
for our Theory of Mind are not observable. One way to resolve this is to treat the
object as a state in an agent’s action sequence. For example, the stack of rocks from
our opening vignette can be interpreted as the final action state in a sequence of
actions where an agent stacked some number of rocks, one by one. Reasoning about
how an agent’s actions impact the physical world, and how objects interact with one
another, requires another cognitive capacity: intuitive physics (Téglás et al., 2011;
Spelke and Kinzler, 2007).

Though much is understood about these two cognitive capacities individually, very
little is understood about how they work together to extract social information from
physical objects. Here I briefly introduce a computational framework that instantiates
a simplified version of these capacities. Computational models serve as a formal and
exhaustive testing bed for scientific hypotheses, enabling us to test a full range of
predictions across a full range of cognitively-inspired parameters. These results can
then be directly compared with human data collected from behavioral experiments
to evaluate the hypothesis.

Recent work has formalized Theory of Mind as Bayesian inference over a generative
model of utility-maximizing action plans (Jara-Ettinger et al., 2016; Jara-Ettinger,
2019). That is, we first observe an action and attempt to sample mental states until
we determine which set of mental states explains the action we observed. Specifically,
the actions generated aim to maximize the agent’s utility, adhering to the principle
of rational action (Gergely and Csibra, 2003), and formalizing in precise probabilis-
tic terms the essence of the previous qualitative approaches by Dennett (1989) and
Gergely et al. (1995).

Mathematically, this work has expressed the problem of inferring an agent’s beliefs
b and desires d given some observed action a by:

p(b, d|a) ∝ p(a|b, d)p(b, d)

where p(a|b, d) captures how beliefs and desires lead to actions and p(b, d) are an
agent’s prior assumptions about others’ likely beliefs and desires. Given that actions
cannot be observed in the examples I consider (Figure 1.2), I propose an extension
to the traditional belief-desire psychology framework. Where agents normally reason
about others’ observable actions, in this extended framework they instead reason
about observable traces in order to reconstruct the actions that led to them. This
event reconstruction can then be used to infer others’ goals, beliefs, and desires (see
Figure 1.4). Here I focus on goal inference as a case study, though this model could
be easily extended further to account for beliefs and desires (given another model
that maps beliefs and desires to goals). Mathematically, this extended model can be
expressed by:

p(g|t) ∝ p(t|g)p(g)
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where actions a are now replaced by observable traces t (e.g., an object). The term
p(t|g) can be further unpacked as follows:

p(t|g) = p(t|a)p(a|g)

The first term p(t|a) represents our internal causal model of how actions leave be-
hind traces in the environment (i.e., our intuitive physics). The second term p(a|g)
represents our internal causal model of how goals guide an agent’s actions (i.e., our
Theory of Mind). Given this extended model, we can now generate a probabilistic
expectation of another agent’s goals, all from interpreting an object as a trace of
that agent’s past actions. The third goal of this thesis is to investigate this model’s
efficacy in capturing human intuitions about what traces can reveal about the agents
responsible for them (Chapter 4).

Given that an agent was involved in arranging a scene, and that we can reconstruct
what happened, what kinds of mental states can we extract? The reconstruction does
more than elucidate their likely goals. It can also tell us about the effort that went
into arranging the scene. Consider again the examples in Figure 1.2. They all elicit
a common mental state: communicative intent. Specifically, whoever arranged these
objects had the intention to communicate with others that they should stay away,
else why impose a cost? Critically, these objects do not truly restrict our actions—the
imposed cost is negligible enough that we could ignore it, yet we do not because we
understand what the other agent desires. This example highlights the phenomenon of
communicative objects, which is one type of mental-state inference that we can make
from objects.

We model this interaction using a social recursive reasoning framework similar
to those used in pedagogical demonstrations (Ho et al., 2016; Shafto et al., 2014),
pragmatics (Frank and Goodman, 2012; Goodman and Frank, 2016), and mental-
state inferences (Ullman et al., 2009). Consider an initial scene s0 of two exits in an
office building. There is an agent, an enforcer, that does not want another agent, a
decider, to walk through one of the doors. Indeed, this resembles almost all of the
situations in Figure 1.2. The enforcer can place some number of objects in front of
one of the doors to communicate their desires (to stay away), transforming scene s0
into scene s. The enforcer’s utility function can be described by:

UE(s; a, s0) = RE(a)pD(a|s)− CE(s0, s)

where RE(a)pD(a|s) represents the enforcer’s egocentric reward if the decider takes
action a, weighted by the probability that they take that action, and CE(s0, s) rep-
resent the enforcer’s cost for generating scene s from scene s0. Here we can see that
the enforcer is incentivized to choose scene transformations that minimize the effort
required to arrange them.

The decider simply chooses which door to walk through a, given the following
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Figure 1.5: Example stimuli used in Experiment 1 (Chapter 2). On the left, there is a
single perfectly-aligned tower in an array of slightly-misaligned towers. On the right, there
is a single slightly-misaligned tower in an array of perfectly-aligned towers.

utility function:

UD(a; s0, s, ϕ) = RD(a)− CD(a, s) + ϕ < ℓ(a|s0, s) >

where RD(a) and CD(a, s) represents the decider’s reward and cost for taking action
a. < ℓ(a|s0, s) > represents their “adopted utility” (Powell, 2022), weighted by a
cooperation parameter ϕ that determines if they are cooperative, antagonistic, or
apathetic towards the enforcer’s desires. These utility functions reflect a recursive
structure that is grounded at the implementation level. The central idea behind
this proposal is that if people can infer other agents’ mental states based on how
they manipulated an object, then people can also strategically manipulate objects
with the purpose of eliciting mental-state inferences in agents who encounter these
objects. The fourth goal of this thesis is to test this model’s efficacy in capturing
human intuitions about the creation and interpretation of communicative objects
(Chapter 5).

1.5 Thesis overview

1.5.1 Chapter 2

The existing literature on the perception of agency reveals how certain stimuli—
those directly pertaining to agents—are prioritized in visual processing. Here I asked
whether this might extend to physical objects. That is, does there exist low-level
visual cues that reveal whether an object contains social information? I hypothesized
that, moreso than perfect order, slight deviations from order is a potential cue. In a
first experiment, I showed participants two types of block towers: one that consists
of a perfectly-aligned stack of blocks, and another that consists of a stack of blocks
that are slightly off from perfect alignment (see Figure 1.5). Using the visual search
paradigm (inspired by the “stare-in-the-crowd” effect; Von Grünau and Anston, 1995),
I found that participants were more accurate and faster at finding the block tower
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when it was misaligned (surrounded by an array of aligned towers) than when it
was perfectly-aligned (surrounded by an array of misaligned towers). This result
suggests that objects containing slight deviations from perfect order may be receiving
attentional prioritization in visual processing.

1.5.2 Chapter 3

Another possible mechanism for detecting social information from physical objects
is to consider whether an appropriate natural process could explain observed ma-
nipulations. I formalized this hypothesis as a computational model that infers the
probability that an agent was involved in environmental manipulations by only con-
sidering the likelihood that the manipulations could occur by physics alone. In a
first experiment, I showed participants synthetic images consisting of blocks arranged
inside of a cardboard box with a hole cut out from the top, and they were tasked
with determining if a particular arrangement was the result of an agent or a nat-
ural process (i.e., the blocks falling through the cutout). I found that this model
generally captured participant intuitions about the plausibility of an agent’s involve-
ment. This result suggests that considering the physical plausibility of environmental
manipulations is sufficient in detecting whether an object contains social information.

1.5.3 Chapter 4

Given the knowledge that an agent was involved in arranging a scene, we can now
reason about them, despite never having encountered them. Here I proposed that the
way people do this is through event reconstruction, where physical objects are seen as
traces of an agent’s previous actions, and can therefore be used to reconstruct them.
In a series of experiments, I showed participants small gridworld representations of a
room with multiple goals and entrances. In Experiment 1, I first tested whether our
model matched human inferences in a task where participants had to infer an agent’s
entry point into the room and goal, all from a single pile of cookie crumbs that served
as the trace. I found that the model strongly correlated with participant judgments,
suggesting initial evidence for our event reconstruction account. In Experiment 2, I
then explicitly tested people’s ability to reconstruct the actions they believe different
agents took based on indirect physical evidence of their presence. Here I also found
that the paths that the model sampled tightly matched the paths that participants
drew, lending further support to the idea that the inferences in Experiment 1 were
supported by an ability to reconstruct events. In Experiment 3, I tested whether
participants could infer whether one or two agents were involved, given two physical
traces. I found that while this task was harder for participants, they were still able to
infer the number of agents in each scene. Combined, these results suggest that event
reconstruction supports how people infer social information from the physical traces
that agents leave behind.
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Figure 1.6: Visual schematic of our quantitative experiment cover story. Participants
learned that a farmer (purple agent) wanted to protect their pomegranates and placed
boulders to block the way before leaving. After leaving, a hiker would arrive and decide
which fruit to take. In the non-mentalistic condition, the hikers treat the boulders as natural
constraints, and they therefore decide what to do without thinking about the farmer. In
the mentalistic condition, the hikers know that a farmer must have placed the boulders, and
use this to infer what to do.

1.5.4 Chapter 5

Given that an agent was involved, and that we have an estimate of what they did,
we can now infer their mental states. Here I focused on the phenomenon of low-cost
communicative blockers, where agents use objects as communicative deterrents by im-
posing a small cost (e.g., Figure 1.2). I modified a Bayesian framework used to under-
stand an agent’s goals, desires, and beliefs from their actions to perform mental-state
inference from physical objects. In Experiment 1, I presented a computational model
that reveals that a combination of two intuitive causal models—Theory of Mind and
a simplified version of intuitive physics—predicts participant responses in a graded
inference task (see Figure 1.6). In Experiments 2-4, we present behavioral evidence
against an account that suggests that people only rely on explicit pedagogy and con-
vention to interpret these objects, rather than relying on any mental-state inference.
I found that this model provided a strong quantitative fit to participant judgments.
Furthermore, participant responses in our qualitative experiments aligned with our
account, but not with the account based on explicit pedagogy and convention.
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1.5.5 Chapter 6

Altogether, this work presents evidence towards a theoretical account of how we
come to embed and extract social information from the physical world. In Chapter 6,
I close with a discussion of my findings, and elaborate on some limitations and areas
for future research.
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Chapter 2

How do we detect the presence of
agents?

2.1 Introduction

Our world is commonly carved into two domains: the physical and the social. From a
pile of toy alphabet blocks, we can quickly perceive the color and shape of each indi-
vidual block, the contrast between adjacent or nearby blocks, and even the stability of
any stacked blocks (Cholewiak et al., 2013). Often what we are most interested in is
not the blocks themselves, but the people building them. From minimal observation
of others, we can perceive their dispositions without the slightest amount of thought,
such as their trustworthiness and dominance (Todorov and Duchaine, 2008). How-
ever, even objects can contain rich social information—consider the alphabet blocks
again, but arranged in a near-perfect stack. A once socially-devoid scene, it now
reveals that an agent was involved. What about this scene makes this so obvious?

One possibility is that there exist low-level visual cues in the objects that agents
interact with that reveal their involvement. This idea presumes that our visual system
functions as a filter for these low-level visual cues—these traces of agency. By contrast,
if these traces did not receive specialized visual processing, we would be overwhelmed
by the sheer magnitude of objects in our visual environment. To resolve this, we
prioritize stimuli through the selective operation known as attention, which acts as
a filter to both what we perceive and what we think about (Chun, 2011; Treisman,
2006). The idea of specialized visual processing for certain types of stimuli is not
a new idea. In fact, decades of work in vision science has shown that our visual
system prioritizes the most social stimuli around: people. In particular, work on
the perception of animacy has shown specialization over specific properties of agents,
like faces (Kanwisher et al., 1997; Johnson et al., 1991; Simion et al., 2001) and
body movements (Troje, 2013; Johansson, 1973, 1976; Peuskens et al., 2005). Beyond
observing living, breathing bodies, even simple shapes appear as animate (Heider and
Simmel, 1944) and intentional (Gao et al., 2010; van Buren et al., 2016) through the
cue of self-propulsion (Premack, 1990; Hauser, 1998; Di Giorgio et al., 2017).
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Figure 2.1: Example of a contrast between “perfect” order and order with slight errors.
The grid of circles on the left appear so perfectly made, an agent would require a stencil to
create. The grid of circles on the right, however, are just the kind of thing that an agent
with a pair of scissors would produce.

This large body of work highlights the many ways in which the mind automatically
and irresistibly extracts high-level properties from relatively simple visual stimuli,
sometimes consisting of nothing more than a few shapes. If agents receive specialized
visual processing, might some form of this specialization also extend to the traces of
agency—such as the tower of alphabet blocks—and, if so, what are the cues?

Previous work has shown that from a very young age, children understand the
link between agency and regularity (Newman et al., 2010; Keil and Newman, 2015a).
Newman et al. (2010) showed that 12-month-old infants looked longer when an inani-
mate ball was responsible for creating an organized arrangement from a disorganized
one, but did not exhibit preferential looking when an animate ball was responsible for
the same action. In related work, 9-month-old infants associated a regular color se-
quence (e.g., yellow, yellow, red, yellow, yellow, red) as being the product of a human
hand instead of a mechanical one (Ma and Xu, 2013). These findings reveal that even
infants expect animate entities to be “creators of order” and inanimate entities to be
“creators of disorder”. This suggests that a potential cue for the traces of agency is
whether or not an arrangement of objects contains regularity. In some cases, however,
what is maximally regular sometimes seems artificial and non-agentive, and is instead
ascribed to be the work of a machine or a supernatural entity (Aquinas, 1485; Dawkins
et al., 1996). Suppose that Figure 2.1 is a black piece of construction paper with holes
in it. The holes on the left seem unlikely to have been made by a person (without a
specialized tool). The holes on the right—with many slight imperfections—seem like
just the kind of outcome that we would expect from a person using a pair of scissors.
While the link between regularity and agency is critical, a key part of this idea is
that this link is causal. As we experience in our daily life, people are not infallible,
so they leave behind traces of their actions, which manifest in the physical world as
slight imperfections.

In this paper, we propose that these slight imperfections reveal if an arrange-
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ment of objects contains social information: specifically, whether or not an agent was
involved. In Experiments 1a and 1b, we use the visual search paradigm (inspired
by the “stare-in-the-crowd” effect; Von Grünau and Anston (1995)) to test partici-
pants’ accuracy and speed when tasked with finding block towers that either slightly
misaligned or perfectly aligned. Our proposal predicts that participants will have
higher performance when searching for the slightly-misaligned block towers over the
perfectly-aligned ones.

2.2 Experiment 1a

In Experiment 1a, we present an initial test of our hypothesis. In our main condition,
participants were tasked with searching for one of two kinds of block towers: either
slightly misaligned or perfectly aligned. If our proposal is correct, participants should
exhibit better performance when looking for the slightly-misaligned block towers.
One potential confound is that the collinearity of the adjacent blocks is driving the
effect, rather than anything about block tower imperfections. To control for this, we
ran a control condition where the blocks were no longer adjacent, disrupting their
appearance as block towers, but still maintained their relative collinearity. Because
spacing the blocks apart reveals additional contours (that were previously hidden
when the blocks were stacked), we removed them to approximately match the visual
complexity across both conditions. If participants are relying on collinearity, they
should continue to perform similarly to participants in our main condition.

2.2.1 Participants

We recruited 200 English-speaking participants (with normal or corrected vision;
M = 32.57 years, SD = 12.73 years) from Prolific.

2.2.2 Stimuli

Stimuli consisted of 1152 images (960 px × 540 px) of block towers made up of
three blocks (made in Blender, version 2.79). Each block was black (#000000) with
a white outline (#FFFFFF; stroke width = 7 px per block face). The background
was also black (#000000) and was surrounded by a grey border (#808080). Half of
these stimuli were for the main condition (e.g., Figure 2.2a), and were partitioned by
several factors: the target block tower type (either slightly-misaligned, in an array
of perfectly-aligned block towers, or vice versa), whether the target was absent or
present (when absent, the target block tower was replaced by a block tower of the
opposite type), whether the image contained seven or nine block towers. The other
half of these stimuli were for the control condition (e.g., Figure 2.2c), had the same
partitions, but were all vertically separated by an entirely black block (#000000) of
equal size that matched the image background. Each misaligned block tower had a
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set of rotational offsets (sampled randomly from the set union of -35, -33, -31, ...,
-15 and 15, 17, 19, ..., 35; measured in degrees) and a set of translational offsets
(sampled randomly from the set -0.45, -0.4, -0.35, ..., 0.45; measured as a fraction of
the block-width).

2.2.3 Procedure

Participants were randomly assigned to one of two between-subjects conditions: either
the main condition or the control condition. Participants read a brief introduction
to the task, containing examples of the two types of block towers they would be
tasked to look for. Participants completed 12 experimental blocks, each containing
12 trials [two array sizes (7/9) × two target presence conditions (present/absent) ×
three repetitions], in a randomized order, for a total of 144 trials. Participants saw
each image for 0.75 seconds (and preceded by a 0.50-second fixation consisting of the
same black display except without any blocks). For each image, they were asked to
press the ‘f’ key if the target block tower was present, and the ‘j’ key if it was absent.

2.2.4 Results

To measure participant performance, we computed their d′ (a measure of sensitivity,
that takes into account hits and false alarms; Green et al., 1966) and mean response
time for each target block tower type (slightly-misaligned vs. perfectly-aligned). The
first two trials of each experimental block were marked as practice, and data for these
were not recorded. In our main condition, we found that participants were more
accurate at finding the slightly-misaligned block towers (M = 2.94) than the perfectly-
aligned ones (M = 2.29; t(99) = 9.038, p < 0.001 from a two-tailed t-test; Figure
2.2b, left). Participants were also faster at finding the slightly-misaligned block towers
(M = 0.83) than the perfectly-aligned ones (M = 0.90; t(99) = −7.531, p < 0.001

from a two-tailed t-test; Figure 2.2b, right). In our control condition, participants
were still more accurate at finding the slightly-misaligned towers (M = 1.16) than
the perfect-aligned ones (M = 0.90; t(99) = 4.083, p < 0.001 from a two-tailed t-test;
Figure 2.2d, left), and were also still faster (M = 1.05 vs. M = 1.08; t(99) = −3.048,
p = 0.003 from a two-tailed t-test; Figure 2.2d, right). Despite there still being a
performance advantage within the control condition, our primary question is whether
this advantage is of the same magnitude as in our main condition (i.e., is the difference
of differences significant). In this analysis, we found that the performance advantage
in the main condition was significantly higher than that in the control condition, both
in accuracy (M = 0.65 vs. M = 0.27, respectively; t(196.176) = 3.947, p < 0.001

from a two-tailed t-test) and response time (M = −0.07 vs. M = −0.03, respectively;
t(190.283) = −2.396, p = 0.018 from a two-tailed t-test).
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Figure 2.2: (a) Example stimuli configurations that participants saw in the main condition
of Experiment 1a. (b) Mean sensitivity and mean response time for each target block tower
type in the main condition of Experiment 1a. (c) Example stimuli configurations that
participants saw in the control condition of Experiment 1a. (d) Mean sensitivity and mean
response time for each target block tower type in the control condition of Experiment 1a.
Error bars correspond to bootstrapped 95% confidence intervals.

2.3 Experiment 1b

In Experiment 1a, we compared our main condition against a control condition where
the blocks were separated, in a manner that would approximately match the contours
in the main condition. As a result, most of the blocks in these displays no longer re-
sembled blocks. In Experiment 1b, we replicate our main condition from Experiment
1a and compare it against another control condition where the block towers continue
to be separated, but no longer hide the additional contours that appear when moving
the blocks.

2.3.1 Participants

We recruited 200 English-speaking participants (with normal or corrected vision;
M = 35.38 years, SD = 13.30 years) from Prolific.
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Figure 2.3: (a) Example stimuli configurations that participants saw in the control condi-
tion of Experiment 1b. (b) Mean sensitivity and mean response time for each target block
tower type in the main condition replication of Experiment 1b. (c) Mean sensitivity and
mean response time for each target block tower type in the control condition of Experiment
1b.

2.3.2 Stimuli

Stimuli consisted of 1152 images (960 px × 540 px) of block towers made up of three
blocks (made in Blender, version 2.79). Each block was black (#000000) with a white
outline (#FFFFFF; stroke width = 7 px per block face). The background was also
black (#000000) and was surrounded by a grey border (#808080). Half of these
stimuli were for the main condition, and were identical to those used in Experiment
1a. The other half of these stimuli were for the control condition (e.g., Figure 2.3a),
had the same partitions, but were all vertically separated by an invisible block of
equal size. Like in Experiment 1a, each misaligned block tower had a set of rotational
offsets (sampled randomly from the set union of -35, -33, -31, ..., -15 and 15, 17, 19,
..., 35; measured in degrees) and a set of translational offsets (sampled randomly from
the set -0.45, -0.4, -0.35, ..., 0.45; measured as a fraction of the block-width).

2.3.3 Procedure

The procedure was exactly the same as in Experiment 1a.

2.3.4 Results

As in Experiment 1a, we measured participant performance by computing their d′ and
mean response time for each target block tower type (slightly-misaligned vs. perfectly-
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aligned). The first two trials of each experimental block were marked as practice, and
data for these were not recorded. In our main condition, we found that participants
were more accurate at finding the slightly-misaligned block towers (M = 2.91) than
the perfectly-aligned ones (M = 2.31; t(99) = 8.391, p < 0.001 from a two-tailed t-
test; Figure 2.3b, left). Participants were also faster at finding the slightly-misaligned
block towers (M = 0.86) than the perfectly-aligned ones (M = 0.94; t(99) = −9.545,
p < 0.001 from a two-tailed t-test; Figure 2.3b, right). In our control condition,
participants were still more accurate at finding the slightly-misaligned towers (M =

1.09) than the perfect-aligned ones (M = 0.85; t(99) = 3.454, p < 0.001 from a two-
tailed t-test; Figure 2.3c, left), but were no longer faster (M = 1.04 vs. M = 1.06;
t(99) = −1.702, p = 0.092 from a two-tailed t-test; Figure 2.3c, right). Again,
our primary question is whether this advantage is of the same magnitude as in our
main condition. In this analysis, we found that the performance advantage in the
main condition was significantly higher than that in the control condition, both in
accuracy (M = 0.60 vs. M = 0.24, respectively; t(197.990) = 3.521, p < 0.001 from
a two-tailed t-test) and response time (M = −0.08 vs. M = −0.02, respectively;
t(167.135) = −3.658, p < 0.001 from a two-tailed t-test). Combined with the results
from our previous control condition, these findings suggest that the block towers are
receiving some form of attentional prioritization due to their slight imperfections,
rather than because of some low-level feature.

2.4 Discussion

Here we presented some initial evidence towards a cue-based account that proposes
that we can detect the involvement of agents from the way they interact with objects
in the environment. In Experiment 1a, we showed that participants exhibit stronger
visual search performance for slightly-misaligned block towers over perfectly-aligned
ones. In a control condition, we further showed that this could not be the result of
collinearity between adjacent blocks, as separating the blocks—without introducing
any new contours that would increase the visual complexity of the stimuli—led to
participants’ performance advantage to diminish. This control condition not only
disrupted the perception of block towers (due to separating the blocks), but also
led to most of the blocks no longer resembling blocks (due to removing some of
the contours). In Experiment 1b, we replicated our main condition findings, and
compared this replication with another control where we also separated the blocks,
but this time did not hide the resulting contours, retaining the “objectness” of all
blocks in the scene. Combined, these experiments suggest that our visual processing,
specifically our attention, may be specialized for these kinds of traces of agency.

Our proposal revolves around “slight imperfections”, but there are two possible
ways to evaluate this, each importing its own assumption. The first way is to start
with a goal state, and deviate slightly (e.g., by adding noise). For example, perceiving
the imperfect holes in Figure 2.1 (right) as the product of an agent would involve either
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knowing or inferring the underlying goal state (i.e., Figure 2.1, left). The second way
to evaluate an arrangement of objects for “slight imperfections” is to instead rely on
an internal causal model of the world to simply reconstruct what is already in front
of you. While both of these possibilities seem unlikely to occur online, given the sheer
magnitude of computation that would be required, it is possible that they represent
a computational-level description of our account. Establishing this connection is an
open area of future work.

A related alternative hypothesis that we did not consider here is that these ar-
rangements of objects may become salient through visual statistical learning (Turk-
Browne et al., 2005). Consider seeing a stack of rocks in the forest. Our proposal
would suggest that something about regularity makes this structure appear out-of-
place, but it could also be that our visual system has “learned” that this arrangement
is unlikely to occur in this context. The extent to which statistical learning plays a
role remains an open question.

Vision is often associated with the perception of low-level features, such as colors
and contrasts, but here we have expanded upon a rich body of work showing how
vision can also extract social information, such as an agent’s involvement. We hope
that this work will contribute to understanding the role that perception plays in
helping us navigate the social world.
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Chapter 3

Detecting social information through
physical reasoning

This chapter is based on: Lopez-Brau, M., Kwon, J., McBean, B., Yildirim, I., & Jara-
Ettinger, J. (2021). Detecting the involvement of agents through physical reasoning.
CogSci.
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Abstract

The physical world is rich with social information that people readily detect and
extract, such as inferring that someone was present when we encounter a stack of
rocks in the woods. How do people recognize that a physical scene contains social
information? Research in developmental psychology has argued that this capacity is
supported by a sensitivity to violations of randomness. Here we present a computa-
tional model of this idea and test its explanatory power in a quantitative manner.
Our model infers agency by estimating the likelihood that a scene would arise natu-
rally, as determined by human intuitive physics instantiated as a physics engine. Our
results suggest that people’s ability to detect agency in a physical scene is sensitive
not only to the superficial visual properties, but also to the underlying physical gen-
erative process. Our results highlight how people use intuitive physics to decide when
to engage in nuanced social reasoning.



3.1 Introduction

Human cognition is structured around our capacity to reason about the physical
world—the spaces that we navigate and the objects we use and manipulate—and the
social world—the agents that we encounter and the way we interact and cooperate
with each other (Lake et al., 2017; Carey, 2009). A now large body of research
suggest that reasoning about the physical and social world are supported by two
initially distinct representational systems: Our naïve understanding of physics, which
is grounded in representations of objects, their masses, and forces (Spelke, 1990;
Baillargeon, 1987), and our naïve understanding of agency, which is grounded in
representations of agents, their mental states, and intentional actions (Jara-Ettinger
et al., 2016; Wellman, 2014; Woodward, 1998; Gergely and Csibra, 2003).

While these two systems support rich and flexible reasoning about objects and
agents in isolation, many important problems in our everyday lives happen at their
intersection. Understanding how agents act on the world often requires both repre-
senting what psychological states produced the agent’s behavior (i.e., intuitive psy-
chology), and how objects in the world will react to the forces that the agent’s physical
body applies (i.e., intuitive physics). Consistent with this, recent research suggests
that the ability to integrate intuitive physics and intuitive psychology emerges early
in childhood, supporting a range of social judgments, such as inferring the difficulty
of different tasks (Gweon et al., 2017; Yildirim et al., 2019) and deciding when and
how to help (Bennett-Pierre et al., 2018).

While these past studies show how people can combine social and physical rea-
soning when watching or interacting with agents, recent research suggests that this
integration might also happen even in the absence of observable agents (Lopez-Brau
and Jara-Ettinger, 2020; Schachner and Kim, 2018; Gosling et al., 2002; Lopez-Brau,
2021). For instance, people can infer what an agent was doing based on indirect evi-
dence of their presence, such as a pile of breadcrumbs, and they can use the inferred
actions to determine what the agent intended to do (Lopez-Brau, 2021; Lopez-Brau
and Jara-Ettinger, 2020).

While these studies show that people can integrate intuitive psychology to inter-
pret physical arrangements of objects, they do not shed light on how people determine
when to engage in joint physical and social reasoning, particularly when no agents
are present to suggest that social reasoning might be useful. One possible solution
to this problem is that people first analyze physical environments through physical
reasoning, and engage in social reasoning whenever they detect features of the en-
vironment that cannot be explained by physics alone. Consistent with this view,
research suggests that violations of physics trigger an expectation of agency. For
instance, after seeing an inert object fly into a scene, infants expect the presence of
an agent in the area where the object came from (suggesting that they inferred an
agent must have thrown the object, as objects cannot generate their own motion;
Saxe et al., 2005). Similarly, infants infer the presence of an agent when a disordered
set of objects becomes ordered but not the other way around (Newman et al., 2010).
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The idea that people rely on a violation of natural physics to determine when social
reasoning is necessary is consistent with the qualitative research reviewed above. Yet,
to our knowledge, no work has sought to test this theory’s explanatory power in a
quantitative manner. In this paper we present a formal instantiation of this theory,
implemented as a computational model that infers the involvement of an agent by
considering the likelihood that the scene would occur by physics alone. To achieve
this, we rely on advances in computational cognitive science suggesting that physical
reasoning in humans is structured like a noisy physics engine (Battaglia et al., 2013;
Gerstenberg et al., 2020) that supports mental physical simulations about objects
and their forces. Here we propose that these same physical simulations can support
the detection of agents. Critically, this account predicts that the detection of agents
from physical scenes should not only depend on the arrangement of objects, but also
on their physical properties. For instance, a set of blocks should give rise to different
intuitions about the likelihood of an agent’s involvement based on an observers’ beliefs
about the physical properties of the blocks (such as their weight) and the process they
believed occurred before (such as the height at which the blocks were dropped). Thus,
our experimental work focuses on this component: testing if people’s intuitions about
agency are affected by their beliefs about the causal process and the weight of the
blocks, as well as by the likelihood that different ordered structures might appear
naturally by physics.

3.2 Computational Framework

To make our focus concrete, consider the scenes shown in Figure 3.1. These displays
represent a cardboard box with two cutouts. The cutout on the top of the box acts as
a funnel and allows for blocks to fall through and land somewhere inside of the box.
The cutout along the side of the box allows for an agent to manipulate the position
of some or all of the blocks. Although we may never see the blocks falling through
the funnel, we can intuitively reason that the arrangement of blocks in Figure 3.1a is
unlikely to occur if the blocks were simply dropped into the funnel due to the height
of the box, the fact that one of the blocks managed to stack on top of another, and
the fact that this stack is quite far away from the funnel. Conversely, we would judge
that the arrangement of blocks in Figure 3.1b is much more likely to occur naturally,
since most of the blocks lie directly beneath the funnel and the block on the right
may have simply bounced to that position. Our computational model aims to explain
these intuitions.

We take as a starting point previous work showing that human naïve physics
is instantiated as a physics engine that supports mental simulations about objects
and their forces (Battaglia et al., 2013). In our model, however, rather than using
a physics engine to predict the outcome of an event, we instead use it to infer the
likelihood of a scene arising through some natural, physical process.

Formally, we model the environment (e.g., Figure 3.1a-b) inside of a physics engine
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(b)

(a)

Figure 3.1: Examples of stimuli from our behavioral experiment. (a) Example of the short
box stimuli. The blocks in this scene are arranged in such a way that it is implausible that
they occurred naturally by falling through the funnel. (b) Example of the tall box stimuli.
The blocks in this scene are arranged in such a way that it is plausible that they occurred
naturally by falling through the funnel.

that simulates the process of dropping blocks through a funnel to build a distribution
over expected physical outcomes. For simplicity, we first explain how we evaluate
a scene with respect to a single simulation result from the physics engine, and then
present how we achieve the full inference process.

Given a sample from the physics engine (i.e., the final outcome obtained from a
physical simulation), we evaluate the observed scene by comparing its block arrange-
ment against the block arrangement obtained from the sample. The simplest way to
do this would be through a likelihood function that assigns a probability of 1 to the
scene whenever the sample is an exact match, and 0 otherwise. Such a likelihood
function, however, would be too strict, as it would fail to distinguish a sample that
is close to the observed scene from a sample that is significantly different from the
observed scene. To remove this concern, we assigned a non-zero probability to the
scene when there were blocks in the scene that were positioned close to the blocks
in the sample. To achieve this, we considered every possible permutation of blocks
P that links the blocks in the scene to the blocks in the sample (i.e., every possible
1-1 correspondence relation), and then calculated the probability that each observed
block bj would appear as far as it did from the corresponding simulated block b̂pj
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Figure 3.2: Subset of experiment results with corresponding stimuli above. (a-b) In these
examples, participants judged them to be more likely with heavier blocks, since lighter blocks
might be more prone to bouncing off one another. (c-d) In these examples, participants
judged them to be more likely with a taller box, to give the blocks more leeway to bounce
further into the box. (e) Since blocks stacking is already quite rare, seeing a stack of
blocks away from the funnel leads participants to infer that an agent must have intervened.
Following our color labeling from Figure 3.3, red bars correspond to the short box conditions
and blue bars correspond to the tall box conditions. Errors bars are 95% bootstrapped CIs.

under each permutation p ∈ P , such that

p(bj|b̂pj) =
p(X = dxy(bj, b̂pj))p(Z = dz(bj, b̂pj))

p(X = 0)p(Z = 0)

where dxy(bj, b̂pj) represents the distance between the blocks in the xy-plane (com-
puted by taking the difference between the radii of each observed block bj and each
simulated block b̂pj and, where (0, 0) is the point directly underneath the center of
the funnel). This difference is then used to compute a likelihood by passing it as
argument to a Gaussian probability density function (pdf) P (X = dxy(bj, b̂pj)) and
normalizing it by dividing by the max of this Gaussian pdf (i.e., P (X = 0)) in order
to produce a valid probability. dz(bj, b̂pj) is computed identically, except that the
difference involves the z-coordinate of each block. Throughout, we set X ∼ N (0, 7)

to capture some noise tolerance on the xy-plane and Z ∼ N (0, 0.01) to capture near
zero tolerance on any perceived variation on the z-axis (thus preventing the possibil-
ity that a block stacked on top of another could be considered similar to a nearby
block).

Given this method of calculating the probability that a sample ŝ would produce
the scene s under a mapping from simulated blocks to observed blocks p, we set the
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likelihood of the simulation generating the scene as

L(s|ŝ) = max
p∈P

1

B

B∑
j=1

p(bj|b̂pj).

This likelihood therefore captures the average likelihood of each simulated block
matching an observed block, under the best association between simulated blocks
and observed blocks.

Finally, we compute the final probability that a scene is generated by the physics
engine through Monte Carlo sampling, such that

P (s|physics) ≈ 1

N

N∑
i=1

L(s|ŝi)

where ŝi is a sample from the physics engine. Throughout, all model predictions were
obtained by sampling 10,000 simulations.

3.3 Behavioral Experiment

We evaluated our model in an experiment where participants saw images like those
shown in Figure 3.1 and they had to infer whether some or all of the blocks in the
scene had been manipulated by an agent. Critically, our model predicts that these
inferences should depend not only on the visible arrangement of the blocks, but also
on the underlying physical process. We therefore manipulated both the weight of
the blocks and the height of the box to test if this physical information would affect
participant inferences, as our model predicts.

3.3.1 Participants

160 U.S. participants (as determined by their IP address) were recruited using Prolific
(M = 34.58 years, SD = 12.20 years). 34 participants were excluded and replaced
for failing our inclusion criteria.

3.3.2 Stimuli

Our stimuli consisted of 34 images of blocks arranged inside the bottom of a box, like
those shown in Figure 3.1 (see tinyurl.com/ylvkowh6 for full stimuli). Each image
contained 1, 2, or 3 blocks, and blocks were always positioned around one of three
locations: directly underneath the funnel, near the middle of the box, or on the distal
end of the box opposite from the funnel. Our stimuli consisted of all permutations
of these placements (including configurations where some or all of the blocks were
stacked). We designed three trials with one block, nine trials with two blocks, and
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22 trials with three blocks. Lastly, based on which of the two conditions participants
were randomly assigned to, they would either see a short box (e.g., Figure 3.1a) or a
tall box (e.g., Figure 3.1b). All stimuli were generated using the Blender 3D modeling
software.

3.3.3 Procedure

Participants were randomly assigned to one of four conditions: light blocks inside
of a short or tall box or heavy blocks inside of a short or tall box. This allowed us
to test whether the exact same arrangement of blocks elicits different inferences as
a function of participants’ beliefs about the height of the box and the weight of the
blocks. Participants read a brief introduction that explained the logic of the study,
followed by a video that demonstrated how the blocks fall through the funnel and
into the box. This video featured five blocks and a box of a different height than
what participants would see in the trials, and served to give participants information
about the weight of the blocks.

All participants completed the same 34 trials in a random order (varying only in
the displayed box height, which depended on the condition). On each trial, partici-
pants were asked “How likely is it that a person moved some or all of the blocks?”,
using a continuous slider from “not likely” (i.e., 0) to “very likely” (i.e., 1). After the
17th trial, all participants were presented with a catch trial that was used as one of
our exclusion criterion. This catch trial showed two blocks “glued” to the side of the
box, in a way that is impossible to occur naturally, so people should judge that an
agent must have manipulated the blocks.

3.3.4 Results

For each participant, their judgments were normalized by subtracting them by the
participant’s minimum judgment, and dividing this by the participant’s maximum
judgment minus the participant’s minimum judgment. This same normalization pro-
cedure was applied to our model predictions for each condition. Finally, participant
judgments were averaged together to produce a mean normalized participant judg-
ment for each trial and condition. Figure 3.3 shows the results from Experiment 1.
Overall, our model showed a correlation of r = 0.86 with participant judgments (95%
CI: 0.82− 0.89). Within each condition, our model showed correlations of: r = 0.87

(95% CI: 0.79− 0.91) for a short box and light blocks; r = 0.87 (95% CI: 0.76− 0.93)
for a short box and heavy blocks; r = 0.89 (95% CI: 0.84 − 0.93) for a tall box and
light blocks; and r = 0.83 (95% CI: 0.70− 0.90) a tall box and heavy blocks.

Figure 3.2 shows the results from five trials across the four conditions. As this
figure shows, people’s judgments show a subtle but highly systematic pattern across
conditions that reveals their sensitivity to the physical properties of the blocks and
the process that might have given rise to their arrangement (i.e., the height of the
box and the weight of the blocks). Figure 3.2a shows a situation where a stack of two
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r = 0.86 (95% CI: 0.82−0.89)
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Figure 3.3: Results from our behavioral experiment. Each point corresponds to a judg-
ment, with normalized model predictions on the x-axis and mean normalized participant
judgments on the y-axis. Color indicates which condition the judgment corresponds to, and
the fitted line shows the best linear fit with 95% confidence bands (in light grey).

blocks appeared directly underneath the funnel. Here, participants were more likely
to believe this could have occurred naturally when the blocks were heavy relative to
when they were light. Figure 3.2b shares an identical pattern, with higher probability
when the blocks are thought to be heavier, but the additional stacked block leads
to an overall decrease in probability across all conditions. Figure 3.2c-d show how
judgments varied as a function of the box height. In Figure 3.2c, a set of three blocks
that is farther away from the funnel is considered to be more likely when the blocks
are light relative to when the blocks are heavy, with the highest inference when the
blocks were light and the box was tall. In Figure 3.2d, the fact that two blocks are
even farther away from the funnel lead to a main decrease in participant judgments,
with the highest one corresponding to light blocks dropped from a tall box. Lastly,
Figure 3.2e resembles Figure 3.2d except now the two blocks on the right are stacked.
The overall decrease in the probability of this arrangement occurring naturally can
likely be attributed to the implausibility of a block tower occurring so far from the
funnel.

3.4 Discussion

Intuitive physics is often thought of as a capacity that helps us navigate the physical
world. Our results show that this capacity can be used to do more than reason about
the physical properties of the world: it can also be used to detect the involvement of
agents in physical scenes. Here we explored the idea that the detection of agency from
physical arrangements of objects is grounded in a sensitivity to violations of natural
physics. We tested this possibility by implementing a computational model of human
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intuitive physics through a physics engine (Battaglia et al., 2013) and comparing it
to human judgments in a range of parametrically-varying displays. Our experiment
showed that people can infer the likelihood that an agent was involved a scene based
on the possible physical process that could have given rise to the scene naturally.

Critically, under our account, people should be sensitive not only to the visual fea-
tures of a scene, but also to their underlying beliefs about the physical process. Con-
sistent with this, our model captured human judgments with quantitative precision in
a task where we varied not only the arrangement of the blocks, but also participants’
beliefs about the height at which the blocks were dropped and the weight of the
blocks. Qualitative analyses of participant judgments showed a systematic structure
that revealed sensitivity to the different physical features of each condition (height
and weight). These effects, however, were subtle. One possibility is that this was due
to a task artifact, as the conditions were run across participants and each participant
therefore only ever saw one set of physical parameters (i.e., one box height and one
block weight). In future work, we will replicate this study with a within-subjects
design to better evaluate participant’s sensitivity to physical properties.

Despite the high numerical fit, our experiment also revealed trials where partic-
ipants and our model disagreed (see Figure 3.3). An initial qualitative analysis of
these trials suggests that this was due to our model having a high noise tolerance
when comparing blocks in a simulated sample to the observed blocks in a scene (by
having a large variance in the Gaussian pdf for each block; Eq. 3.2). In current work
we are increasing the number of physical simulations, enabling us to decrease the
tolerance to mismatches between samples and observed scenes. This will allow us
to obtain more precise inferences that will shed light on whether these model errors
were due to a limitation in our inference procedure, or whether they reflect additional
cognitive processes that humans use in our task but that are not captured in our
model.

Here we focused on the inferences that people can make using only a model of
physics. We believe such inferences are crucial for helping humans detect when to
extract social information from physical scenes. For instance, hiking alone in a forest
may involve little social reasoning until we encounter a scene that violates our ex-
pectations of what nature can do. Once we detect a violation of physics, people may
engage in joint physical and social reasoning to explain what they see. It is possible,
however, that social reasoning is much more pervasive than we recognize and that
even physical arrangements of objects are always implicitly analyzed to see if they
contain social information. If so, then a model that judges agency by simultaneously
testing the physical plausibility of the scene (as our model does) and evaluating its
consistency with what an agent would be likely and able to achieve, should outperform
the current model that we presented. We are currently investigating this possibility.

Overall, our results suggest that human intuitive physics is central to human
reasoning, not only because it enables us to reason about physical arrangements of
objects, but also because its failure to explain what we see can help us determine when
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there is more than meets the eye. These results are a first step in characterizing how
our intuitive theories enable us to seamlessly extract physical and social information
from our surroundings.
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Chapter 4

How do we reconstruct the past
actions of agents?

This chapter is based on: Lopez-Brau, M., Kwon, J., & Jara-Ettinger, J. (2020).
Social inferences from physical evidence via Bayesian event reconstruction. Journal
of Experimental Psychology: General, 151 (9), 2029–2042. https://doi.org/10.
1037/xge0001182
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Abstract

Humans can make remarkable social inferences by watching each other’s behavior.
In many cases, however, people can also make social inferences about agents whose
behavior they cannot see, based only on the physical evidence left behind. We hy-
pothesized that this capacity is supported by a form of mental event reconstruction.
Under this account, observers derive social inferences by reconstructing the agent’s
behavior, based on the physical evidence that revealed their presence. We present
a computational model of this idea, embedded in a Bayesian framework for action
understanding, and show that its predictions match human inferences with high quan-
titative accuracy. Specifically, Experiment 1 shows that people can infer where an
agent came from and which goal they pursued in a room, all from a small pile of cookie
crumbs. Experiment 2 shows that people can explicitly reconstruct the actions that
the agent took, and these reconstructed trajectories can predict the entry point and
goal inferences from Experiment 1. Finally, Experiment 3 shows that people can also
infer whether one or two agents were in a room based on the position of two piles of
cookie crumbs. Our results shed light on how people extract social information from
the physical world.



4.1 Introduction

As social animals, humans possess a specialized cognitive system to process, under-
stand, and predict each other’s behavior, known as a Theory of Mind (Gopnik et al.,
1997; Wellman, 2014). Theoretical and empirical work suggests that human Theory of
Mind is instantiated as a mental model that specifies the causal relation between other
people’s unobservable mental states and their observable actions. That is, Theory of
Mind captures how we expect other people’s thoughts, preferences, and feelings to
guide what they do. Equipped with this intuitive theory, people can infer the mental
states that causally give rise to other people’s observed behavior.

A rapidly growing body of work suggests that the causal model within Theory of
Mind is structured around an assumption that agents act to maximize their utilities—
the difference between the subjective costs they incur and the subjective rewards they
obtain—capturing the idea that we intuitively expect others to act rationally and effi-
ciently (see Jara-Ettinger, 2019, for review). Consistent with this view, computational
models of mental-state inference via utility maximization reach human-level perfor-
mance on simple social tasks (Baker et al., 2017; Jern et al., 2017; Jern and Kemp,
2015; Jern et al., 2011; Jara-Ettinger et al., 2020a), they capture richer forms of so-
cial behavior including pedagogy (Bridgers et al., 2020; Ho et al., 2019) and moral
reasoning (Ullman et al., 2009), they explain social reasoning in early childhood and
infancy (Gergely and Csibra, 2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Lucas
et al., 2014), and they have identifiable neural correlates (Collette et al., 2017).

Despite its success, this approach implicitly posits that mental-state inference re-
quires access to someone’s observable behavior, as it is these observed actions that
enable us to evaluate the plausibility of different mental states. In many cases, how-
ever, people can make social inferences about agents whose behavior we did not get
the opportunity to see. For example, imagine walking into an office building and find-
ing a vacant receptionist desk with a chewed-up pencil, a half-filled crossword puzzle,
and a cellphone. From this arrangement of objects, we can immediately infer that
the receptionist might have been experiencing anxiety or restlessness (as the pencil
was chewed-up), that they were likely procrastinating or had few tasks to complete
at the moment (as they were working on a crossword), and that they expected to be
gone only momentarily (as they chose to leave their valuable belongings unattended).

As the examples above show, human social inference is not limited to an ability to
extract social information from observable actions—we can also make social inferences
from physical scenes with no direct social or temporal information. How do we achieve
this and how fine-grained are these inferences? Here we propose that social inferences
about unobservable agents are supported by a basic form of event reconstruction,
where, upon seeing indirect evidence of an agent’s presence, we reconstruct what
actions they likely took, enabling us to reason about the agent’s behavior in a similar
way to how we would if we had seen them act first-hand.

While it has long been known that the ability to infer social information from
observed actions emerges early in infancy (Gergely and Csibra, 2003; Onishi and
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Baillargeon, 2005; Woodward, 1998), recent studies suggest that social reasoning
from physical events also emerges early in childhood. By preschool, children can
estimate the difficulty associated with building different physical arrangements of ob-
jects (Gweon et al., 2017); they understand which kinds of actions leave physical
traces in the environment and which kinds of actions do not (Jacobs et al., 2021);
they can infer what someone knew based on physical evidence for how they searched
an area (Pelz et al., 2020); and they can even detect the transmission of ideas by
comparing artifacts created by different agents (Pesowski et al., 2020).

This past research suggests that the capacities needed to perform social infer-
ence via event reconstruction might be in place from childhood. However, to our
knowledge, no work has formally explored the event reconstruction hypothesis that
we propose here. Specifically, we hypothesized that people can causally reason about
how goals lead to actions, and how actions leave traces in the environment. Combin-
ing these two causal models enables people to understand how goals lead to observable
traces in the environments, connected by an inferred internal variable consisting of
the actions that the agent took, which we call an event reconstruction. Here we
present a computational model of this idea, testing social reasoning from agent-less
physical scenes. Given indirect evidence that someone was present, our model infers
what the agent was doing (i.e., reconstructs their actions) and why (i.e., infers their
goals) through a generative model of how goals produce actions, and how actions
leave observable evidence.

4.1.1 Connection to related proposals in social psychology

Consistent with our proposal, research in social psychology has found that people
leave “behavioral residues” in their environments: physical cues that support rich
inferences about their personality traits. For example, by looking at a picture of
someone’s messy desk, people can infer that the inhabitant is likely disorganized.
From similar displays, people can also infer the inhabitant’s degree of extraversion,
conscientiousness, and even openness to new experiences (Webb et al., 1966; Gosling
et al., 2002, 2008).

These inferences have been proposed to stem from a two-stage process, where
people first use physical cues (such as a desk’s cleanliness, the number of books in the
room, or the cheerfulness of the décor) to infer someone’s behavior, and then use this
behavior to infer the underlying dispositions (Gosling et al., 2002; Brunswik, 1956).
In this model, cue utilization captures how people transform these cues into social
inferences, and cue validity captures whether these are accurate. Our hypothesis is
consistent with this model, and it can be thought of as proposing that cue utilization
consists of a form of Bayesian event reconstruction. From this standpoint, our work
can be thought of as proposing a mechanism for how people associate different physical
traces to the underlying behavior. Our work contributes to this literature by propos-
ing a fully specified computational theory behind event reconstruction, grounded in
the expectation that agents act rationally and efficiently in their environment, given
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their goals. Critically, however, previous models also account for inferences that peo-
ple make based on stereotypes—a process that is outside of the scope of our work.
We return to this point in the Discussion.

4.1.2 The current work

In Experiment 1, we first tested whether our model matched human inferences in a
task where participants had to infer an agent’s entry point into a room and their
goal, all from a single pile of cookie crumbs that revealed their presence (see Figure
4.1). In Experiment 2, we then explicitly tested people’s ability to reconstruct the
actions they believe different agents took based on indirect physical evidence of their
presence, lending further support to the idea that the inferences in Experiment 1 were
supported by an ability to reconstruct events. Finally, if social reasoning from phys-
ical scenes is supported by event reconstruction, people should be able to also infer
how many agents might have been present in a room, based on how many paths they
need to reconstruct to explain the scene. We tested this prediction in Experiment
3. Combined, our results suggest that people have a nuanced capacity to infer social
information from indirect evidence, and that these inferences are based on a basic ca-
pacity to “enhance” physical scenes by inferring agents’ spatiotemporal behavior based
on the indirect evidence that they leave behind. All studies were approved by the Yale
University Institutional Review Board (protocol: “Online reasoning” #2000020357).

4.2 Computational Framework

Our model builds on a growing body of work showing that mental-state attribution
is instantiated as Bayesian inference over a generative model of utility-maximizing
action plans (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020a; Jern et al., 2017;
Jern and Kemp, 2015; Jern et al., 2011; Lucas et al., 2014). In our model, however,
rather than evaluating unobservable goals against observable actions, we model how
people might use physical evidence to reconstruct the actions that an agent took, and
use these reconstructed actions to attribute goals.

To make our focus concrete, consider a situation like the ones shown in Figure
4.1a. Each of these displays represents a room with three possible goals (A in blue,
B in orange, and C in green), two different doors (1 at the top in both rooms and
2 on the bottom and left, respectively), a set of walls (shown in dark gray), and a
small pile of cookie crumbs that reveals that someone was previously in this room.
Although we cannot see where this agent came from, what actions they took, or what
goal they were pursuing, the cookie crumbs nonetheless contain information that we
might be able to extract. In Figure 4.1a (left), the cookie crumbs intuitively reveal
that the agent entered through door 1 and that they were likely pursuing goal A or C,
but not goal B. In Figure 4.1a (right), the cookie crumbs intuitively reveal that the
agent was pursuing goal C, but it is unclear whether they entered through door 1 or
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door 2. Our computational model aims to explain how we performed these inferences.

A B

C

A B

C

(b)

(a)

Model Event Reconstructions

Example Stimuli

Figure 4.1: (a) Example stimuli from Experiment 1. Potential goals are positioned in
the corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded
numerically. Walls are shown in dark gray. Each trial included a pile of cookie crumbs
positioned in a part of the room. (b) Visualizations of the underlying event reconstruction
performed by our computational model for the examples above. Each line represents an
inferred possible path, color-coded to indicate time, moving from light green to dark blue.

Formally, we model the environment as a gridworld, where the possible states of
the world are given by the different positions in space that agents can occupy. At each
time step, we assume that agents can move in any of the four cardinal directions and
that these actions successfully move them in their intended direction (except when
attempting to cross a wall, in which case the agent remains in the same position as
they were before).

Given an observed static scene s (a gridworld with a set of goals, doors, walls, and
a pile of cookie crumbs), the objective is to infer where the agent entered the room
from (a door d) and which goal they pursued (a goal g), formally expressed as

p(d, g|s) ∝ ℓ(s|d, g)p(d, g),

where ℓ(s|d, g) is the likelihood of encountering scene s if an agent had indeed pursued
goal g after entering through door d, and p(d, g) is the prior over doors and goals.

According to our proposal, the ability to compute the likelihood function is me-
diated by a capacity to reconstruct the agent’s actions. Under this view, if we can
reconstruct the actions that the agent took, then judgments about the agent’s entry
point and goal are immediately revealed, as these are part of the reconstructed be-
havior (i.e., if we have access to the full reconstructed behavior, we can “see” where
the agent entered from and where they were going). Formally, this idea can be im-
plemented by expressing the likelihood function as
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ℓ(s|d, g) =
∑
t∈T

p(s|t)︸ ︷︷ ︸
How do actions
leave traces?

×

How do agents
pursue goals?︷ ︸︸ ︷
p(t|d, g).

Here t = (s⃗, a⃗) is a trajectory (from the set of all possible trajectories T), which
consists of an ordered sequence of pairs of states and actions that the agent took.
p(s|t) is the probability that an agent who took trajectory t would produce the ob-
served scene s, and p(t|g, d) is the probability that the agent would take trajectory t

if they entered from door d with the intention to pursue goal g. This equation reveals
the two components critical to our theory: an expectation of how agents navigate
to complete their goals (p(t|d, g)), and an expectation of how agents’ actions leave
observable traces in the environment (p(s|t)).

To compute the expectations for how agents complete their goals, we used the
standard framework previously developed in computational models of goal inference
(Baker et al., 2009, 2017; Jara-Ettinger et al., 2020a) through Markov Decision Pro-
cesses (MDPs)—a planning framework that makes it possible to compute the action
plan or policy that maximizes an agent’s utility function (Bellman, 1957). Classical
MDPs are designed to produce a single trajectory that fulfills the agent’s goal as
efficiently as possible. In the cases that we consider, however, there are often mul-
tiple trajectories that can be equally efficient. As such, using a simple MDP can
erroneously treat an efficient trajectory as unlikely if it is not an exact match to the
solution that the MDP produced. To solve this problem, we built a probabilistic
MDP that creates a probability distribution over all possible action plans, assigning
higher probability to trajectories that are more efficient. Formally, we achieved this
by softmaxing the MDP’s value function when building the probabilistic policy. We
used a low temperature parameter to identify all possible action plans that are equally
(or approximately equally) efficient, enabling us to implement the expectation that
agents navigate efficiently towards their goals. Using a probabilistic MDP, the prob-
ability that an agent would take trajectory t, starting from door d with the intention
to fulfill goal g is given by

p(t|g, d) =
|t|∏
i=1

p(ai|si, g),

where p(ai|si, g) is the probability of taking action ai in state si, and the state sequence
is given by trajectory t.

Finally, in our paradigm, we assume that the agent has a uniform probability of
dropping the pile of cookie crumbs at any point in their path. The probability of
observing scene s if the agent took trajectory t is therefore given by p(s|t) = 1/|t| if
the pile of cookie crumbs lies within the trajectory and 0 otherwise.
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4.2.1 Implementation Details

To generate testable predictions, we set a number of parameters in our model prior to
data collection. These choices are all reflected in our pre-registered model predictions
(see https://osf.io/q3ct5/). We began by setting a uniform prior distribution
over doors and goals, such that agents were equally likely to enter through any of
the doors and equally likely to pursue any of the goals. Next, to model the forces
that shape agents’ actions, we assumed that agents incur a constant cost of 1 for
any action that they take, and that goals produced numerical rewards over the range
0−100. Finally, to make our MDP probabilistic, we applied a temperature parameter
τ = 0.15 to the value function. This parameter was set a priori to ensure that the
model would give equal probability to all paths that were equally efficient, while only
placing a negligible probability on erroneous and inefficient trajectories.

Model inferences were obtained via Monte Carlo methods, sampling 1000 combi-
nations of doors and goals and 1000 trajectories conditioned on the selected door and
goal. Figure 4.1b visualizes our model’s inferred trajectories for the examples shown
in Figure 4.1a, with each line corresponding to a sample from the posterior distri-
bution, color-coded to indicate time, moving from light green to dark blue. These
visualizations show how our model reconstructs the agent’s probable spatiotemporal
behavior, which in turn reveal the agent’s entry point and goal, matching the intuitive
inferences associated with these examples in the introduction.

4.3 Experiment 1a

In Experiment 1a, we tested our model in a task where people had to infer which goal
an agent was pursuing and where they came from, all from a single piece of indirect
evidence about their presence. If people’s ability to infer goals from physical evidence
is mediated by event reconstruction, then their judgments should show a quantitative
fit to our model predictions, including fine-grained patterns of uncertainty. This study
was pre-registered; all study materials can be found at https://osf.io/q3ct5/.

4.3.1 Participants

40 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (M = 37.02 years, SD = 11.20 years).

4.3.2 Stimuli

Stimuli consisted of 23 gridworld images, like those in Figure 4.1a. Each gridworld
was 7-by-7 squares in size and represented a room that contains three goal squares
(A in blue, B in orange, and C in green), up to three doors (labeled 1, 2, and 3), and
a pile of cookie crumbs. The goals were always in the same corners, but the position
of the doors and the pile of cookie crumbs varied between trials. In addition to these
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three features, a subset of trials included walls (shown by the dark gray squares in
Figure 4.1a) that agents could not walk through.

Our stimuli set was designed to capture different types of inferences while also
controlling for features that simple heuristics could exploit (e.g., ensuring that the
target goal was not always the one closest to the cookie crumbs, and that it could
not be determined by projecting a straight line that intersected the entrance and
the location of the cookie crumbs). We began by considering four different possible
inference patterns: assigning probability close to 1 to a hypothesis (high certainty
trials), assigning probability close to 0 to a hypothesis, while also not having full cer-
tainty over two remaining hypotheses (high negative certainty trials), assigning
a higher probability to one of the hypotheses (partial certainty trials), and as-
signing an approximately uniform distribution to the hypothesis space (uncertain
trials).

We first designed seven single-door trials that captured each of these inference
patterns in goal inference (two high certainty, high negative certainty, and
partial certainty trials, and one uncertain trial; schematic versions shown in
Figure 4.3a). We then designed 16 additional trials with multiple doors by combining
every possible inference pattern for the goal the agent was pursuing and the entrance
that they took (schematic versions shown in Figure 4.3b).

4.3.3 Procedure

Participants read a brief tutorial that explained the logic of the task. After learning
how to interpret the images, participants were told that agents were equally likely to
enter the room from any of the doors with the intention of going directly to one of the
three goals (to remove the possibility that agents pursue multiple goals, or wander
aimlessly before selecting one). After the introduction, participants completed a
questionnaire that ensured they read and understood the instructions. Participants
that failed at least one question were redirected to the beginning of the instructions
and given a second chance to participate in the study. Participants that failed the
questionnaire twice were not permitted to participate in the study.

Participants completed all 23 trials in a random order. On each trial, participants
answered a multiple-choice attention-check question (“Which corner is farthest from
Door 1 (there may be more than one)?”) and were asked to infer the agent’s goal
(“Which corner is the person going for?”) using three continuous sliders, one for each
goal (each ranging from 0, labeled as “definitely no,” to 1, labeled as “definitely”).
Trials with at least two doors included a third question that asked participants to
infer the agent’s entry point (“Which door did they come from?”) using one slider
per door (each also ranging from 0, labeled as “definitely no,” to 1, labeled as “defi-
nitely”). Participants were allowed to submit their responses for each trial only when
they correctly answered the attention-check question. Otherwise, participants were
prompted to “please pay attention and try again.”
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Figure 4.2: Results from Experiment 1a. Each point corresponds to a judgment, with
model predictions on the x-axis and mean participant judgments on the y-axis. Color
indicates inference type and the dotted line shows the best linear fit with 95% confidence
bands (in light gray).

4.3.4 Results

Each participant’s judgments were first normalized within-trial (such that every dis-
tribution over goals or doors added up to 1) and then averaged across participants.
Figure 4.2 shows the results from Experiment 1a. Overall, our model showed a corre-
lation of r = 0.94 (95% CI: 0.91−0.96) with participant judgments, and the strength
of the model fit was similar when looking only at goal inferences (r = 0.95; 95% CI:
0.92− 0.97) or door inferences (r = 0.92; 95% CI: 0.86− 0.95).

Figure 4.3 shows our model’s results as a function of trial. In each subplot, the
image at the top shows an abstract schematic of the trial, with the pile of cookie
crumbs marked as a brown square. This figure reveals how our model not only
predicted participant judgments in situations where the agent’s entry point and goal
were clear, it also matched participant judgments in its expression of uncertainty.
Critically, our model produced nuanced patterns of uncertainty across trials, which
reflect how well it was able to reconstruct the event, becoming less confident as
a function of how much conflict there is in entry points and goals across different
hypothetical reconstructions. The fact that this event-based uncertainty matched
participant judgments with quantitative accuracy suggests that participants may have
also been performing these inferences via some form of event reconstruction.
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Figure 4.3: Detailed results from Experiment 1a. From top to bottom, each row of subplots
corresponds to the high certainty, high negative certainty, partial certainty,
and uncertain trials for goal inferences, respectively. (a) Results for trials that only had
one door. (b) Results for trials that had more than one door. From left to right, each column
of subplots corresponds to the high certainty, high negative certainty, partial
certainty, and uncertain trials for door inferences, respectively. The goals A, B, and C
are indicated by the blue, orange, and green squares, respectively. The doors are sequentially
numbered in a clockwise fashion, with door 1 starting from the top (or from the right if there
is no top door). Walls are marked as dark gray squares and the pile of cookie crumbs are
indicated by the brown squares. Red lines represent mean participant judgments and blue
lines represent our model’s predictions. Error bars on participant judgments represent 95%
bootstrapped confidence intervals.
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One possibility is that the underlying goals or entry points of the agent correlate
with superficial features of the stimuli, such as the proximity of the cookie crumbs
to different doors or goals. If this is the case, then participants may have been
able to infer agents’ entry points and goals without performing any form of event
reconstruction. We tested this possibility through a multinomial logistic regression
trained to predict participant goal inferences as a function of the distance between the
pile of cookie crumbs and each goal, the average distance between the pile of cookie
crumbs and each door, the number of doors, and all of their interactions. To train
this model, we transformed participant judgments into a one-hot vector, marking 1
for the goal with the highest probability and 0 for the rest, and implemented LASSO
regularization (Tibshirani, 1996) to avoid overfitting. We generated the alternative
model’s predictions in a leave-one-out fashion—that is, the predictions for each trial
consisted of the output of a regression trained on all remaining trials.

Even though this alternative model was trained on the qualitative structure of
participant judgments, it nonetheless only produced a correlation of r = 0.49 (95%
CI: 0.30− 0.63) with participant judgments, which was substantially lower than the
one produced by our model (∆r = 0.46; 95% CI: 0.33−0.65). These results show that,
while superficial features can capture the broad structure of participant judgments,
they fail to do so at our model’s level of granularity, further suggesting that people’s
inferences were centered on a form of Bayesian event reconstruction.

4.4 Experiment 1b

Experiment 1a showed initial evidence for our model in a situation where people had
no prior information about the agent. In many cases, however, people have prior
knowledge about others, and this information affects their inferences. In Experiment
1b, we therefore tested if our model continued to capture participant inferences in
a context where people were given prior information about the agent’s behavior.
This study was pre-registered; all study materials can be found at https://osf.io/
q3ct5/.

4.4.1 Participants

160 English-speaking participants were recruited using Prolific (M = 33.49 years,
SD = 11.36 years).

4.4.2 Stimuli

Stimuli consisted of 16 gridworld images, evenly divided across a door prior and a
goal prior condition. Each gridworld was similar to those in Experiment 1a, with the
difference that each trial now included prior information about an agent’s behavior. In
the door prior condition, each gridworld contained nine red ‘X’ markers, distributed
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across the doors. These markers represented the number of times the agent previously
entered through each door. In the goal prior condition, each gridworld contained nine
red ‘X’ markers, distributed across the three goals. These markers represented the
number of times the agent previously pursued each goal.

To construct the stimuli for the goal prior condition, we first selected four grid-
worlds from Experiment 1a’s partial certainty condition, and four gridworlds
from Experiment 1a’s uncertain condition (with respect to goal inferences). For
each selected gridworld, we considered four possible prior distributions over the goals:
{(3, 3, 3), (6, 2, 1), (1, 6, 2), (2, 1, 6)}. Because this condition consisted of eight
gridworlds, each possible prior distribution was randomly assigned to one gridworld
from the partial certainty set and to one gridworld from the uncertain set.
This assignment was randomized across participants to ensure an equal amount of
data for every possible combination of gridworld and prior distribution (resulting in
a total of 8× 4 = 32 possible combinations).

The stimuli for the door prior condition were designed in a parallel way. We first
selected four gridworlds from Experiment 1a’s partial certainty condition, and
four gridworlds from Experiment 1a’s uncertain condition (this time with respect to
door inferences). Because all gridworlds from the partial certainty condition had
three doors, we used the same set of priors and assignment procedure used in our goal
prior condition described above. By contrast, all gridworlds from the uncertain
condition had two doors. The priors for these trials were therefore sampled from the
set {(5, 4), (5, 4), (7, 2), (2, 7)}.1

4.4.3 Procedure

The procedure was nearly identical to Experiment 1a, except that participants were
also taught how to read the prior information. Participants were told that, in each
gridworld, they would see the agent’s entry point or goal (depending on condition)
for the agent’s nine previous visits, and their task was to infer the agent’s entry
point and goal for the tenth event. After the introduction, participants completed a
questionnaire that ensured they read and understood the instructions. Participants
that failed at least one question were redirected to the beginning of the instructions
and given a second chance to participate in the study. Participants that failed the
questionnaire twice were not permitted to participate in the study.

Participants completed all 16 trials in two experimental blocks, one for the door
prior condition and another for the goal prior condition. Experimental block order
and within-block trial order were randomized across participants. The prior infor-
mation on each trial was determined by one of four distributions (see Stimuli). On
each trial, participants answered a multiple-choice attention-check question (“Which
corner is the farthest walk from Door 1? If there is more than one correct answer,

1The pre-registered duplication of (5, 4) in the prior set was accidental, as it was meant to be (4,
5). This affected only 4 of the 64 possible gridworld-by-prior tests, and our experiment continues to
have the necessary variability to compare participants to our model.
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just choose one of them.”) and were asked to infer the agent’s goal (“Which corner is
the person going for?”) using three continuous sliders, one for each goal (each ranging
from 0, labeled as “definitely no,” to 1, labeled as “definitely”), and asked to infer the
agent’s entry point (“Which door did they come from?”) using one slider per door
(each also ranging from 0, labeled as “definitely no,” to 1, labeled as “definitely”).
Participants were allowed to submit their responses for each trial only when they cor-
rectly answered the attention-check question. Otherwise, participants were prompted
to “please pay attention and try again.”

4.4.4 Model Predictions

Model predictions were obtained in the same way as Experiment 1a, with the dif-
ference that the prior distribution over goals and doors was based on agents’ prior
behaviors. To achieve this, we began with a uniform distribution over goals and doors
for every gridworld, and updated each distribution through Bayes’ rule based on the
prior behavior (i.e., the nine observations) shown in the gridworld, using the gener-
ative process specified in our model (i.e., by assuming that agents probabilistically
choose the goal with the highest utility, subject to a softmax process with tempera-
ture τ = 0.1). The resulting distributions were then set as the prior distributions in
the study.

4.4.5 Results

Data was analyzed in the same way as Experiment 1a. Each participant’s judgments
were first normalized within-trial (such that every distribution over goals or doors
added up to 1) and then averaged across participants for each condition. Figure 4.4
shows the results from Experiment 1b. Overall, our model showed a correlation of
r = 0.91 (95% CI: 0.89 − 0.92) with participant judgments, and the strength of the
model fit was similar for the goal prior condition (r = 0.91; 95% CI: 0.89− 0.93) and
the door prior condition (r = 0.90; 95% CI: 0.86− 0.92). Critically, these inferences
once again revealed that participants produce graded patterns of confidence across
trials, as predicted by our model. Together, these results show that people, like our
model, can integrate prior information about how an agent behaved to reconstruct
their actions given indirect physical evidence.

4.5 Experiment 2

In Experiment 1, we found that people can infer where an agent was going and where
they came from, all from a single piece of indirect evidence about their presence.
Participant judgments were quantitatively predicted by a model centered on an ability
to reconstruct what happened. If our account is correct, then people should also be
able to explicitly reconstruct the actions that an agent took in a way similar to our
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Figure 4.4: Results from Experiment 1b. Each point corresponds to a judgment, with
model predictions on the x-axis and mean participant judgments on the y-axis. Color
indicates inference type, shape indicates condition, and the dotted line shows the best linear
fit with 95% confidence bands (in light gray).

model. We test this prediction in Experiment 2. This study was pre-registered; all
study materials can be found at https://osf.io/q3ct5/.

4.5.1 Participants

40 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (M = 38.25 years, SD = 11.02 years).

4.5.2 Stimuli

The stimuli were the same as those from Experiment 1a (see Figure 4.1a for examples
and Figure 4.3 for schematic versions).

4.5.3 Procedure

Participants read a brief tutorial that explained the logic of the task. Participants
were then taught how to draw their paths. After the introduction, participants com-
pleted a questionnaire that ensured they read and understood the instructions. Par-
ticipants that failed at least one question were redirected to the beginning of the
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instructions and given a second chance to participate in the study. Participants that
failed the questionnaire twice were not permitted to participate in the study.

Participants completed all 23 trials in a random order. On each trial, participants
were asked to infer the path they thought the agent took, given the pile of cookie
crumbs. Participants generated their paths by sequentially clicking on the squares
they believed the agent walked through. Participants were only allowed to proceed
when they had successfully generated a valid path, which consisted of paths that
started at a door, ended at a goal, and passed through the pile of cookie crumbs.
Participants were allowed to reset the drawn path as many times as they wished.

4.5.4 Model Predictions

To evaluate the participant-generated path reconstructions, we used our framework
to calculate

p(t|s) ∝ p(s|t)p(t),

where p(s|t) is the likelihood of a trajectory t generating scene s and p(t) is the
prior over possible trajectories. Here, p(s|t) = 1/|t| (like in Equation 4.2) and p(t) is
obtained by marginalizing over agents’ potential goals and entry points, as follows:

p(t) =
∑
d,g

p(t|d, g)p(d, g).

4.5.5 Results

Our computational framework enables us to calculate the probability assigned to each
path generated by participants. However, directly interpreting these probabilities is
difficult, as they are sensitive to the length of the path and to the number of com-
peting paths that fulfill a goal efficiently. To make our results easier to interpret, we
compared our model’s evaluations of the participant-generated path reconstructions
with that of a baseline model. This baseline model used a uniform transition function
over all actions, excluding the one that would generate a transition to the previous
state (to prevent infinite back-and-forth loops). For every participant, we computed
the Bayes factor for each of their reconstructed paths by dividing the probability of
each path, as predicted by our model (i.e., p(t|s)), by the probability predicted by
the baseline model. A Bayes factor greater than one would indicate that our model
explains a participant’s reconstructed path better than the baseline model; a Bayes
factor less than one would indicate that the baseline model explains a participant’s
reconstructed path better than our model.

Our model outperformed the baseline model on all trials. The average Bayes factor
in our experiment was 16935.33 (lowest factor = 7933.79; highest factor = 84383.12),
meaning that our model was, on average, much more likely to produce the participant-
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Inference Type: Human Model

Figure 4.5: Comparison of reconstructed paths generated by our model and participants
in Experiment 2. From left to right, each column of subplots corresponds to the high
certainty, high negative certainty, partial certainty, and uncertain trials for
goal inferences, respectively. (a) Results for trials that only had one door. (b) Results for
trials that had more than one door. From top to bottom, each row of subplots corresponds to
the high certainty, high negative certainty, partial certainty, and uncertain
trials for door inferences, respectively. The goals A, B, and C are indicated by the blue,
orange, and green squares, respectively. The doors are sequentially numbered in a clockwise
order, with door 1 starting from the top (or from the right if there is no top door). Walls
are marked as dark gray squares and the pile of cookie crumbs are indicated by the brown
squares. Each line represents a reconstructed path, color-coded to indicate time, moving
from light orange to dark red (for participants) or light green to dark blue (for the model).
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generated path reconstructions relative to the baseline model (t(39) = 9.10, p < 0.001

using a Bayes factor of 1 as the reference level).
Figure 4.5 shows trial-by-trial results from Experiment 2. Each trial is presented

twice, with our model’s path reconstructions on the left and participant-generated
path reconstructions on the right. All paths are color-coded to indicate time (with
darker colors occurring later in time). For both our model and participants, the higher
path density indicates where the majority inferred the agent to have traveled. As this
figure shows, the distribution of participant-generated path reconstructions largely
matched those generated by our model (although participants were more likely to
generate suboptimal paths).

4.6 Do explicit event reconstructions in Experiment
2 predict inferences from Experiment 1?

The previous results showed that that people can not only reconstruct agents’ actions,
but do so in a way similar to our model. According to our proposal, this event
reconstruction underlies people’s capacity to infer agents’ goals and entry points in
Experiment 1. If this is the case, then the path reconstructions from Experiment 2
should have predictive power over the inferences that participants made in Experiment
1. To test this possibility, we extracted the goals and doors from the participant-
generated path reconstructions. To achieve this, we calculated the proportion of
paths that originated from each possible entrance, and the proportion of paths that
reached each possible goal, and compared these values to the corresponding goal
and door inferences from Experiment 1a. Figure 4.6 shows the results from this
analysis. Overall, the goals and doors extracted from the participant-generated path
reconstructions showed a correlation of r = 0.89 (95% CI: 0.83 − 0.92) with the
inferences participants made in Experiment 1a, and the strength of this fit was similar
when looking only at goals (r = 0.88; 95% CI: 0.80 − 0.93) or doors (r = 0.90; 95%
CI: 0.82 − 0.95). Furthermore, when we compared these extracted goals and doors
against our model’s predictions in Experiment 1a, we found a correlation of r = 0.86

(95% CI: 0.79− 0.91), and a similar fit when looking only at goals (r = 0.85; 95% CI:
0.76− 0.91) or doors (r = 0.88; 95% CI: 0.78− 0.93).

Critically, participants in Experiment 2 could only generate a single path per trial.
By combining the paths of multiple participants, we were able to reveal distributions
over goals and doors that quantitatively resembled the inferences participants made
in Experiment 1a. The fact that these distributions predicted inferences from Exper-
iment 1a suggests that generated paths were samples from the posterior distribution
(rather than maximum likelihood or maximum a posteriori estimates, which would
not contain enough information to reconstruct the full probability distribution over
inferences). This analysis suggests that participants in Experiment 2 had access to
and sampled paths in accordance to these goal and door distributions.
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Figure 4.6: Comparison between the extracted goals and doors from Experiment 2 and the
participant inferences from Experiment 1a. Color indicates inference type and the dotted
line shows the best linear fit with 95% confidence bands (in light gray).

4.7 Experiment 3

Experiment 1 showed that people can infer an agent’s goals and origins, and that
these inferences exhibit the quantitative structure predicted by a model of event
reconstruction. Experiment 2 further showed that people could explicitly reconstruct
the paths in a way similar to our model. In Experiment 3, we test a further prediction
of our account: If our model of event reconstruction is correct, then people should
not only be able to infer a single agent’s probable actions and goals, but also be able
to estimate how many agents might have been in a room, based on how many path
reconstructions are needed to explain a given scene. This study was pre-registered;
all study materials can be found at https://osf.io/q3ct5/.

4.7.1 Participants

40 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (M = 37.62 years, SD = 11.94 years).

4.7.2 Stimuli

Stimuli consisted of 15 gridworld images that were similar to those in Experiment 1,
with the difference that each trial now has two piles of cookie crumbs instead of one
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(see Figure 4.7 for examples). Our stimuli set was designed to capture different types
of inferences that our model supports. Specifically, we designed three different trials
for each of the following possible inference patterns: high certainty that one agent was
in the room (definitely one trials), partial certainty that one agent was in the room
(probably one trials), uncertainty whether it was one or two agents in the room
(uncertain trials), partial certainty that two agents were in the room (probably
two trials), and high certainty that two agents were in the room (definitely two
trials).

(c)

(a) (b)

(d)

Figure 4.7: (a-d) Example stimuli from Experiment 3 for definitely one, probably
one, probably two, and definitely two trials, respectively (see Experiment 3 Stimuli
for details). Potential goals are positioned in the corners, labeled alphabetically, and color-
coded. Doors are shown in yellow and coded numerically. Walls are shown in dark gray.
Each trial included two piles of cookie crumbs positioned in various parts of the room.

4.7.3 Procedure

The procedure was nearly identical to Experiment 1a, except that participants were
instead shown two piles of cookie crumbs and were told that their task was to infer
if one or two agents had been in the room. After the introduction, participants
completed a questionnaire that ensured they read and understood the instructions.
Participants that failed at least one question were redirected to the beginning of the
instructions and given a second chance to participate in the study. Participants that
failed the questionnaire twice were not permitted to participate in the study.

Participants completed all 15 trials in a random order. On each trial, participants
answered a multiple-choice attention-check question (“Which corner is the farthest
walk from Door 1? If there is more than one correct answer, just choose one of them.”)
and were asked to infer how many agents were in the room (“How many people were in
the room?”) using a continuous slider (ranging from 0, labeled as “definitely one,” to
1, labeled as “definitely two”). Participants were allowed to submit their responses for

18



each trial only when they correctly answered the attention-check question. Otherwise,
participants were told to “please pay attention and try again.”

4.7.4 Model Predictions

To predict how many agents might have been in a scene we computed the probability
that a agents were in scene s, through

p(a|s) ∝ p(s|a)p(a),

where p(a) is a prior over the number of agents that could have been present. In
natural contexts, this prior should reflect the statistics of how often different agents
might interact in different environments. To model our experiment, however, we used
a simple uniform prior over the possibility of having one or two agents. This prior
was then weighted by the likelihood of a particular number of agents a generating
scene s, given by

p(a|s) ∝

{∑
t∈T p(s|t)p(t) a = 1∑
t1,t2∈T p(s|t1, t2)p(t1)p(t2) a = 2

To compute the likelihood that two trajectories explain the scene (i.e., p(s|t1, t2)),
we modified our generative model to sample two sets of entry points, goals, and
trajectories at a time instead of one, where the likelihood is defined as 1/(|t1|+ |t2|) if
there was a scene match (i.e., both piles of cookie crumbs lie within both trajectories,
and each trajectory was responsible for one of the piles) and 0 otherwise.

4.7.5 Results

Participant judgments were averaged across trials and compared against our model’s
predictions. Figure 4.8 shows the results from Experiment 3. Participant’s relative
confidence about the number of agents in the scene was quantitatively similar to
our model’s predictions, yielding a correlation of r = 0.76 (95% CI: 0.43 − 0.91).
As before, participants’ pattern of data did not only qualitatively identify the best
inference, but also revealed a graded pattern of confidence that is broadly consistent
with event reconstruction.

Figure 4.9 shows our model’s results as a function of each trial. In each subplot,
the image at the top shows an abstract schematic of the trial, with both piles of cookie
crumbs marked as brown squares. From left to right, each column corresponds to the
definitely one, probably one, uncertain, probably two, and definitely
two trials, respectively. This figure reveals how our model quantitatively predicts
participant judgments across the various trials and levels of uncertainty.

Interestingly, the model fit in Experiment 3 was lower relative to Experiment
1. Under our account, this difference may arise because Experiment 3 requires re-
constructing paths for a single agent, reconstructing paths for multiple agents, and
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Figure 4.8: Results from Experiment 3. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. The dotted line
shows the best linear fit with 95% confidence bands (in light gray).

weighting their relative probability of generating the observed scene. Consistent with
this, we found higher mismatches between our model and participants in the prob-
ably trials (MSE = 0.053) over the definitely (MSE = 0.021) and uncertain
trials (MSE = 0.019). That is, participants struggled more in trials that relied on a
capacity to make precise comparisons between the number of single-agent reconstruc-
tions and two-agent reconstructions.

As in Experiment 1a, we also evaluated whether participant judgments could be
explained by superficial features of the stimuli rather than via event reconstruction.
We tested this possibility through a logistic regression trained to predict participants’
distribution over the number of agents they thought were in the room as a function of
the distance between each goal and each pile of cookie crumbs, the average distance
between each pile of cookie crumbs and the doors, the number of doors, and all of
their interactions. We trained and tested this alternative model in the same way as
the one described in Experiment 1a.

Even though this alternative model had access to the qualitative structure of
participant judgments, it nonetheless produced a correlation of r = 0.19 (95% CI:
−0.30 − 0.66) with participant judgments, which was substantially lower than the
one produced by our model (∆r = 0.58; 95% CI: 0.12 − 1.17). These results extend
our findings from Experiments 1 and 2, suggesting that people can not only infer
an agent’s goals and origins based on indirect evidence of their presence, but also
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Figure 4.9: Detailed results from Experiment 3. From left to right, each column cor-
responds to definitely one, probably one, uncertain, probably two, and defi-
nitely two trials, respectively. Red bars represent mean participant judgments and blue
bars represent our model’s predictions. Error bars on participant judgments represent 95%
bootstrapped confidence intervals.

whether multiple agents may have been present in a given scene.

4.8 Discussion

Research on human action understanding has historically focused on how we infer the
goals and mental states of agents whose behavior we are observing. Our results show
that our capacity to reason about others goes beyond face-to-face interactions and
includes nuanced social inferences from simple physical scenes. In Experiment 1, we
showed that people can infer an agent’s goals (i.e., where an agent was going) and past
actions (i.e., where an agent came from) from a single piece of indirect evidence about
their presence. The tight correspondence between our model’s predictions and the
fine-grained structure of participant judgments suggested that these inferences were
structured around a form of mental event reconstruction: people infer the actions
that an agent took, and use this reconstructed behavior to make richer social infer-
ences. Experiment 2 showed further support for our proposal, revealing that people
can explicitly reconstruct the actions that someone took based on indirect physical
evidence, in a way similar to our model. Furthermore, these explicit reconstructions
predicted participant inferences in Experiment 1, showing a direct link between peo-
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ple’s ability to reconstruct behavior from physical evidence, and the corresponding
social inferences that they make. Finally, in Experiment 3, we found that people can
also infer how many agents were in a given scene, based on the number of paths they
needed to reconstruct to explain the scene.

4.8.1 What cognitive capacities are required for event recon-
struction?

Our computational model formalized social inferences as the process of reconstructing
behaviors that explain the observed physical evidence. Our model’s quantitative
fit with participant judgments, and the failure of our alternative models (despite
being trained on participant judgments), suggests that people were performing similar
computations. In particular, the similarity between the paths generated by our model
and those drawn by participants (see Figure 4.5) suggests that social inferences from
physical evidence are tied to a form of event reconstruction.

The heart of our proposal—expressed in Equation 4.2 (see Section 4.2)—posits
that event reconstruction depends on two different cognitive capacities. The first is a
model of how agents act in the world. The second is a model of how agents’ actions
leave observable traces in the environment.

In our model, the first capacity consisted of a simple expectation that agents navi-
gate towards their goals as efficiently as possible, given the environmental constraints.
This expectation, known as a teleological stance (Gergely, 2003; Gergely and Csibra,
1997), has been hypothesized to be a precursor to mental-state reasoning, support-
ing simple social inferences without requiring active representations of other people’s
minds (Gergely and Csibra, 2003). From this standpoint, our computational model
shows that a full-fledged Theory of Mind is not necessary for performing social re-
constructions from physical evidence, and a teleological stance can suffice.

At the same time, agents with a Theory of Mind might be able to derive richer
social inferences. To illustrate this, imagine that a valuable object that was hidden
in a closet in someone’s house has gone missing. Suppose also that drawers and
cabinets throughout the house were left open, but nothing else had been taken. In this
situation, a pure teleological stance could reveal that the thieves navigated through
the house opening drawers and cabinets. However, a teleological stance alone would
end there, failing to reveal why the thieves pursued these goals. This event, analyzed
through a Theory of Mind, however, would reveal that the thieves knew that the
valuable object was in the house, did not know its exact location, and therefore
searched the house to find it.

This example raises the possibility that a non-mentalistic teleological stance en-
ables people to reconstruct the actions that an agent took, by assuming that they
navigate efficiently in space. Once these actions have been reconstructed, our Theory
of Mind might enable us to extract the complex mental states that can explain why
the agent took the actions that they did. This is a direction that we hope to explore
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in future work.
The second capacity implemented in our model is an understanding of how actions

leave observable traces in the environment. Our model therefore posits that event re-
construction requires an ability to associate different actions with their corresponding
observable traces. Our model used a highly simplified setting where the observable
evidence consisted of a small pile of cookie crumbs. In more realistic situations, the
types of traces that agents leave behind can be rich and variable, from unambiguous
cues like foot tracks on the ground, to more subtle ones, like finding a single apple
tree with no apples, in a row of trees full of ripe apples. This suggests that people’s
capacity to reconstruct behavior is simultaneously powered and constrained by their
knowledge of the relationship between actions and physical traces.

While our work focused on adults, some recent research suggests that these ca-
pacities might emerge in early childhood. In particular, preschoolers can judge what
types of physical constructions (such as different types of block towers) require more
physical effort (Gweon et al., 2017), suggesting an early understanding between ac-
tions and physical outcomes. Moreover, children can also determine what actions are
more likely to leave physical traces. For example, lifting an upside-down cup filled
with rice will likely leave visible rice grains after the cup has been repositioned. But
it is possible to lift and reposition an upside-down cup filled with a few large rocks
without leaving any evidence behind (Jacobs et al., 2021). Recent research has found
that children can even associate physical outcomes with the corresponding mental
states of the agent who generated them (Pelz et al., 2020). Finally, and most strik-
ingly, young children can infer the transfer of ideas by seeing how different agents
create artifacts (Pesowski et al., 2020), a capacity known as “intuitive archaeology”
(Hurwitz et al., 2019; Schachner et al., 2018). While these results point towards an
early understanding of the relation between the social and physical world, to our
knowledge, it is an open question whether these inferences are also linked to some
form of explicit or implicit event reconstruction.

Finally, at the highest level, our work builds on the idea that human cognition is
structured around mental models (also called intuitive theories) of the world (Tenen-
baum et al., 2011), including intuitive theories of the physical world (Battaglia et al.,
2013) and of others (Jara-Ettinger et al., 2020a). Following this tradition, our model
posits that people have (i) a causal understanding of how goals lead to actions and
how actions leave observable traces, and (ii) a mechanism for inverting this causal
model, enabling people to move from observed traces to the underlying goals. In our
model, the inversion mechanism was implemented as Bayesian inference via Monte
Carlo simulations. This approach is consistent with growing evidence that action-
understanding involves some form of Bayesian inference (Baker et al., 2017; Ullman
et al., 2009; Jara-Ettinger et al., 2020a). Nonetheless, our work only tested our model
at Marr’s computational level of analysis (Marr, 1982), and it does not imply that
people are specifically using a Monte Carlo based approach to implement Bayesian
reasoning. Indeed, related work has found that this type of inference can be approx-
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imated via simpler strategies (Bonawitz et al., 2014), and people’s inferences in our
task might not have required active sampling in participants. At the same time, work
in intuitive physics has found some evidence of active sampling in physical reasoning,
opening the possibility that this extends to social reasoning as well (Hamrick et al.,
2015). These are questions that we also hope to explore in future work.

4.8.2 Study limitations

Our work has three main limitations. First, our model and experiments focused
on highly simplified events. In more realistic situations, the space of goals that an
agent might pursue, and the physical evidence they leave behind is substantially more
complex than what our two-dimensional gridworlds can capture. To reason about a
chewed-up pencil, for example, our model would require a more extensive description
of human behavior to compute how an anxious mental state shapes an agent’s action
space, and how the resulting candidate actions (e.g., chewing) leave traces in the
environment. Our proposed model does not currently support social inferences at
this level of complexity, and it is an empirical question whether our approach could
capture human reasoning in these more naturalistic events.

One way in which our framework could tackle richer inferences is by using a
full-fledged model of intuitive physics to evaluate how actions leave traces in the
environment. A recent body of work in cognitive science has found that human
intuitive physics is instantiated as a physics engine that supports rich probabilistic
simulations of how objects and forces interact in the environment (Fischer et al.,
2016; Battaglia et al., 2013), and that physical simulations might underlie how we
reason about the interaction between agents and objects (Yildirim et al., 2019). Thus,
using a physics engine to simulate how the forces that agents apply to the world leave
observable traces might enable our computational framework to handle more complex
physical events that contain social information.

Our second main limitation lies in the narrow range of inferences that we asked
people to make: inferences about where an agent was going, where they entered from,
and how many agents were involved. As noted above, all of these inferences can be
explained through a teleological stance (Gergely and Csibra, 2003). Consequently,
our work does not test the extent to which people can infer complex mental states
or personality traits from physical evidence. Recent work has found that people can
indeed make rich communicative inferences from physical arrangements of objects
(Lopez-Brau and Jara-Ettinger, 2020; Sarin et al., 2021); however, in this work, the
position of the objects unambiguously revealed the agent’s actions (they positioned
the objects where they were most visible to others). This work therefore leaves open
whether the capacity to infer these types of mental states extends to events where
people must perform more complex forms of event reconstruction. In future work, we
hope to incorporate richer models of mental-state inference to test people’s capacity
to infer mental states such as beliefs, desires, knowledge, and intentions from physical
evidence (Jara-Ettinger et al., 2020a; Baker et al., 2017).
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Our third limitation is that our work used simple events with minimal social con-
text: participants had nearly no information about the agent, and the goals consisted
of simple abstract squares. This enabled us to test people’s capacity to reconstruct
events in a controlled manner. In more naturalistic situations, however, the content
of the goals often reveals important information that can help people build more nu-
anced inferences. Imagine, for instance, that one of the squares in our stimuli was
a work desk, the second one was a stationary bicycle, and the third one was a TV.
With this context, the physical trace would not only allow people to infer the agent’s
goal, but also richer aspects of their personality. Relatedly, when more context is
available, people also rely on inferred stereotypes to attribute dispositions (Gosling
et al., 2002, 2008). These richer context-based inferences were not captured by our
work, and are a critical challenge towards building computational models that fully
capture human social reasoning.

Our work also leaves a critical question open. Our experiments focused on situ-
ations where people were explicitly told that an agent was previously present. Our
work therefore does not speak to how people use physical information to infer that
an agent was present in the first place. One possibility is that people engage in a
pervasive and constant social analysis of all physical scenes. Doing so, however, might
be prohibitively costly and unnecessary. As such, it is likely that people are attuned
to the physical signatures that reveal the presence of an agent, which then trigger
social reasoning from physical evidence. Consistent with this second view, research
suggests that people can infer the presence of an agent based on apparent order (New-
man et al., 2010; Keil and Newman, 2015b) and on a sensitivity to human-like errors
that people leave behind when interacting with the world (Lopez-Brau et al., 2021).
An open question is how the ability to detect the presence of an agent interacts with
the ability to reconstruct their behavior and infer their mental states.

4.8.3 Implications and conclusions

At first glance, our computational framework appears to suggest that any creature
with some form of naïve psychology and naïve physics ought to be able to perform
social inferences from physical evidence (i.e., access to the two key components of
Equation 4.2). This may not be the case, however, because our model also requires an
ability to transfer information across these intuitive theories (reconstructing behavior
via naïve psychology and evaluating how they compare to the environment via naïve
physics). While this is an open empirical question, research suggest that intuitive
physics and intuitive psychology rely on separate neural circuitry (Fischer et al.,
2016; Saxe and Powell, 2006), leaving open the question of how these two intuitive
theories might work in tandem to reconstruct other people’s behavior from physical
evidence.

One interesting case that suggests such a feat might not be simple comes from
research with vervet monkeys. Vervet monkeys have an astonishing degree of social
intelligence, including a nuanced repertoire of vocal calls to signal different types of
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predators, each associated with different escape responses (Seyfarth et al., 1980a,b).
Yet, vervet monkeys routinely fail to identify predators from indirect physical evi-
dence. For instance, vervet monkeys fail to infer that a python is hiding in a nearby
bush when they encounter the distinct tracks that they leave behind. Similarly, vervet
monkeys also fail to infer the presence of a leopard upon encountering a gazelle car-
cass on a tree (where leopards usually drag their prey so they can feed in solitude;
Cheney and Seyfarth, 1985). Critically, this failure appears to persist even after
vervet monkeys have, in past events, seen the direct association between the physical
evidence and the predator (Cheney and Seyfarth, 1985, 2008). These results might
point to the possibility that the form of event reconstruction that we present here
might require capacities that go beyond simple physical and social reasoning, as they
involve an ability to combine the two capacities to derive richer inferences than would
be otherwise possible.

Overall, our results illustrate the sophistication of human social intelligence. Be-
yond being able to make social inferences about agents that we are personally interact-
ing with, we can also make social inferences about agents we have never encountered,
just from minimal indirect evidence that reveals their presence. Researchers have
long argued that humans are unique in their ability to reason about and navigate the
social world (Herrmann et al., 2007). Our work shows that this ability is not confined
to social interactions, but can fundamentally affect how we reason about the physical
world, allowing us to see social meaning embedded in physical structures, like a pile
of rocks, where other animals may see merely just that: a pile of rocks.
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Chapter 5

How do we infer the communicative
meaning of objects?

This chapter is based on: Lopez-Brau, M. & Jara-Ettinger, J. (under review). People
can use the placement of objects to infer communicative goals.
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Abstract

Beyond words and gestures, people have a remarkable capacity to communicate in-
directly through everyday objects: A hat on a chair can mean it is occupied, rope
hanging across an entrance can mean we should not cross, and objects placed in a
closed box can imply they are not ours to take. How do people generate and inter-
pret the communicative meaning of objects? We hypothesized that this capacity is
supported by social goal inference, where observers recover what social goal explains
an object being placed in a particular location. To test this idea, we study a category
of common ad-hoc communicative objects where a small cost is used to signal avoid-
ance. Using computational modeling, we first show that goal inference from indirect
physical evidence can give rise to the ability to use object placement to communi-
cate. We then show that people from the U.S. and the Tsimane’—a farming-foraging
group native to the Bolivian Amazon—can infer the communicative meaning of object
placement in the absence of a pre-existing convention, and that people’s inferences
are quantitatively predicted by our model. Finally, we show evidence that people can
store and retrieve this meaning for use in subsequent encounters, revealing a potential
mechanism for how ad-hoc communicative objects become quickly conventionalized.
Our model helps shed light on how humans use their ability to interpret other people’s
behavior to embed social meaning into the physical world.



5.1 Introduction

Humans have a remarkable capacity to communicate through objects, even ones we do
not usually think of as conveying meaning. A hat on a chair can reveal that the seat is
taken; rope surrounding a patch of grass can tell us not to walk through; and, during
snowy winters in the northeastern United States, plastic chairs on shoveled parking
spots are used to signal that they are not up for grabs. These kinds of everyday
objects (Figure 5.1) do little to physically constrain our actions, yet they affect our
behavior because we recognize the meaning they convey. Consistent with this, past
empirical research has shown that people spontaneously use objects to communicate
(e.g., leaving an open notebook on a library table to mark that the space is occupied;
Sommer and Becker, 1969; Becker and Mayo, 1971; Edney and Jordan-Edney, 1974),
and detect when an object is communicative (e.g., realizing that the table with a
notebook must be taken; Becker, 1973; Shaffer and Sadowski, 1975), with this ability
possibly emerging in childhood (Rossano et al., 2015).

What are the cognitive capacities that support our ability to communicate through
objects? One possibility is that communicative objects emerge from a system of simple
conventions, where objects and their placement are explicitly associated with different
communicative meanings. As children, for instance, most of us likely ignored strap
barriers at banks, movie theaters, and DMVs, and their meaning had to be explicitly
taught to us. After learning their meaning, we were then able to recall it whenever
we encountered them in new locations.

While conventional knowledge is undoubtedly a major driver for how we learn
and use communicative objects, people are also able to generate novel communicative
objects that others can readily understand (such as placing an ironing board to mark
that someone has reserved a parking spot; Figure 5.1i). What computations underlie
this capacity? And how does the communicative meaning of novel objects become
conventionalized?

Here we hypothesized that the capacity to embed and infer communicative mean-
ing from novel objects emerges from our ability to reason about the mental states
behind other people’s behavior—our Theory of Mind (ToM; Wellman, 2014; Gopnik
et al., 1997). The central idea in our proposal is that, if people can infer other agents’
mental states based on how they manipulated an object (via Theory of Mind), then
people can also strategically manipulate objects with the purpose of eliciting mental-
state inferences in agents who encounter these objects. Through this method, people
can intentionally manipulate their environment with the goal of communicating their
desires to people who navigate the environment when the communicator is absent. We
propose that this type of reasoning might support the creation of novel ad-hoc com-
municative objects, which can then quickly become conventionalized and widespread,
supported via memory and recognition.

To explore this idea, this paper focuses on a family of objects like those shown
in Figure 5.1. These objects are often not intrinsically communicative: Hats, chairs,
and rope are not purposefully designed for communication, but they can nonetheless
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convey a message when placed in certain locations (Figures 5.1a-c). Moreover, despite
their varied use, these objects all communicate some kind of restriction (e.g., “do not
use” or “do not cross”). Critically, however, this restriction is not imposed purely
through a physical constraint: The cost that these objects impose on agents is low
enough that it could be easily ignored (e.g., walking over the “barriers” in Figures
5.1b and 5.1k is trivial). Intuitively, these objects instead work because people realize
that the object was intentionally placed with the purpose to communicate. Because
of this common structure, we will refer to these objects as low-cost communicative
blockers (LCCBs). While these objects do not capture the full scope of everyday
communicative objects, we believe their use is a fruitful case study for understanding
our proposal. We return our focus to communicative objects more broadly in the
Discussion.

To illustrate the logic of our proposal, imagine trying to find the exit of an un-
familiar building. As you walk down a hallway, you find two doors, side by side.
Suppose, however, that one of the doors has a broom positioned diagonally across
it. Naturally, it is easy to recognize that (1) someone intentionally placed the broom
there and that (2) it creates a small inconvenience for people wanting to walk through
the door. When considering why someone would choose to use a broom to block a
door, one possibility is that they wanted to prevent people from walking through.
But if that were the case, why not put more effort into blocking the door, given how
easy it is to move the broom out of the way? Intuitively, this is because their goal
was not to create an insurmountable physical constraint—which would require more
effort to achieve—but rather to prompt you to infer that they do not want you to
walk through.

This proposal assumes that people can detect intentional arrangements of objects
(e.g., a broom placed diagonally across a door was likely placed intentionally), infer
what an agent did (e.g., an agent must have taken the broom and placed it there),
and determine how much effort it required from the agent and how much it affects
us (e.g., how hard was it to place the broom and what effects does this have on my
potential plans?). Consistent with this, past research has shown that people have a
rich understanding of what physical environments reveal about people (Gosling et al.,
2002; Hurwitz and Schachner, 2020). Moreover, people can infer others’ actions from
indirect physical evidence of their presence (Lopez-Brau et al., 2022), and estimate
the effort involved in moving and manipulating objects (Yildirim et al., 2019). These
capacities also emerge early in development, with children drawing surprisingly rich
inferences from physical evidence, ranging from inferences about what actions an
agent took (Jacobs et al., 2021) and what they knew (Pelz et al., 2020) to inferences
about even richer social information, such as whether two people transmitted ideas
(Pesowski et al., 2020) and have shared interests (Pesowski et al., 2021).

Critically, for communicative objects to have their intended effect, the ability to
reason about them is not enough: people must also be motivated to behave coopera-
tively. If this were not the case, people would ignore low-cost communicative blockers
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Figure 5.1: Real-world examples of people communicating through objects. (a) A hat
on a chair indicating that someone intends to return. (b) Rope a few inches above the
grass so that people know not to walk through. (c) Chairs along the side of the street in
South Boston to reveal that someone shoveled and claimed this parking spot. (d) A traffic
cone in front of some stairs signaling limited access. (e) A bucket along the side of the
street in central Mexico indicating that the parking spot is reserved. (f) An easy-to-cross
fence marking a property limit. (g) A stanchion across a stairwell revealing access may be
restricted to certain individuals. (h) Belt barriers at the airport telling passengers that they
should form a line (and where). (i) An ironing board along the side of the street indicating
that the parking spot is taken. (j) A wooden pole and two small benches in a store in Bolivia
indicating that the owner is not available. (k) A small rope along a sidewalk asking people
not to walk near a construction site. (l) A pair of traffic posts deterring people from using
this walkway.

(LCCBs; since the cost they impose is negligible), and communicators would fa-
vor creating insurmountable physical constraints rather than communicative signals.
While there are undoubtedly cases where people ignore LCCBs, and where people
build physical barriers because they do not expect cooperativeness, the pervasive use
of these objects suggests that there are many cases where people expect strangers to
cooperate by default. This is consistent with evidence that even young children will
spontaneously cooperate with strangers (Warneken and Tomasello, 2006) and that
adults have a default propensity to cooperate (Rand, 2016).

While all this past work establishes the cognitive pre-requisites that our proposal
builds on, to our knowledge, no work has yet explored specifically whether these
capacities underlie the ability to use communicative objects (Figure 5.1).
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5.1.1 Paper overview

Our paper has three goals. Our first goal is to test whether our theoretical proposal
can, in principle, explain the logic of low-cost communicative blockers (LCCBs), where
agents share mental states by using objects to impose a minimal cost on observers.
To achieve this, we present a model that explicitly formalizes our proposal in compu-
tational terms, and we explore its behavior in synthetic simulations (Sections 5.2-5.3)
to test whether it can produce patterns that resemble how people use communicative
objects. Our computational model focuses on the inferences that we make once an
object placement is detected as intentional. We return to the question of how to
detect intentional placements in the Discussion.

Having found theoretical support for our proposal, our second goal is to test
whether the fine-grained quantitative predictions of our account match human judg-
ments when reasoning about novel low-cost communicative blockers. That is, we use
our model to generate exact numerical predictions about the strength of inferences
that people should make in different situations, and we compare them to human
judgments (Experiment 1).

Finally, our third goal is to test whether the mechanisms we propose play a role
when conventional knowledge (i.e., object-meaning mappings that are in common
ground for a social group) is unavailable. That is, our goal is not to argue against
the critical role of convention, but rather to ask what types of inferences people
engage in when they face an object that has no conventional meaning attached to
it (Experiments 2-3), and to explore how these inferences become conventionalized
(Experiment 4).

While our account proposes mechanisms that support both the creation and un-
derstanding of communicative objects, these two behaviors are asymmetrical in two
ways. First, as we show in our model below, recognizing the meaning of commu-
nicative objects is easier than creating them, requiring one fewer level of recursion.
Second, for communicative objects to become ubiquitous, the ability to infer their
meaning must be widespread, while the ability to invent them can be restricted to a
few individuals. Thus, after confirming the computational plausibility of our account
(Sections 5.2-5.3), our behavioral studies (Experiments 1-4) focus on people’s ability
to infer the communicative meaning of low-cost communicative blockers, rather than
on how they are created. We return to this asymmetry in cognitive demand in the
Discussion.

5.2 Computational Framework

For simplicity and clarity, we describe our model in the context of a simple event
similar to the ones we use in Experiments 2-4. Here, an agent (the decider) encounters
two doors—door A and door B—and must decide which one to walk through. Before
they do, another agent (the enforcer), who wants to influence the decider’s choice, has
the opportunity to place objects in front of either door, including stacking multiple
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objects to create a physical constraint. To illustrate, Figure 5.2a shows a situation
where the enforcer has access to four boulders that can be positioned in front of either
door. Figures 5.2d-h show five possible changes that the enforcer could implement
(among many others). Our model therefore consists of (i) an enforcer that moves
objects in a scene with the goal of affecting a decider’s behavior, and (ii) a decider
that determines what to do in a scene by thinking about the costs that the objects
in the scene impose. Critically, we assume that the enforcer and decider are never
in the scene at the same time, such that the decider only has access to the physical
layout of the scene.

In this setup, the enforcer can always pursue a simple non-communicative strategy:
stack enough objects in front of one of the doors to the point that walking through it
is so much work that the decider will prefer to avoid it (e.g., Figure 5.2f). However,
stacking objects in front of a door is also costly for the enforcer. This creates a
preference for more efficient strategies, where agents might exploit their Theory of
Mind to use objects in a communicative manner.

Under our proposal, people use objects to share mental states by reasoning about
the costs incurred by the enforcer (how costly is it for the enforcer to block paths?)
and the decider (what costs does this impose on the decider?). Because past work has
already studied how people reconstruct behavior from physical displays and estimate
the underlying costs (Yildirim et al., 2019; Lopez-Brau et al., 2022; Pesowski et al.,
2020), our model takes this capacity for granted and focuses on the inferences that
people make given access to these costs.

To make cost-based inferences, our framework instantiates Theory of Mind (ToM)
as a form of simple recursive social reasoning, similar to models developed to under-
stand pedagogical demonstrations (Ho et al., 2016; Shafto et al., 2014), pragmatics
(Frank and Goodman, 2012; Goodman and Frank, 2016), and mental-state inferences
(Ullman et al., 2009), and similar to the logic behind k -level ToM models (where k
is a variable indicating the recursion depth within ToM; Devaine et al., 2014). At its
core, our model is structured around an assumption that agents act to maximize their
subjective utilities—the difference between the costs that they incur and the rewards
that they obtain. This assumption is at the heart of human mental-state inferences in
adults (Jern et al., 2017; Baker et al., 2017; Jara-Ettinger et al., 2020b) and emerges
early in development (Liu et al., 2017; Jara-Ettinger et al., 2016; Gergely and Csibra,
2003; Lucas et al., 2014).

Formally, let S be the space of all possible scenes, where each scene s ∈ S repre-
sents an observable arrangement of objects (e.g., see Figures 5.2a,d-h for six possible
scenes in the boulder example). Each agent in this context is defined by two main
components. The first is a cost function that captures how agents interact with the
environment. For the enforcer, their cost function CE represents the cost of moving
objects, such that CE(s0, s) is the cost of transforming an initial scene s0 into a final
scene s (e.g., the cost of changing the scene so that an object in a corner is now
in front of a door). For the decider, their cost function CD represents the cost of
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navigating the environment, such that CD(a, s) is the cost of taking action a in scene
s (e.g., the cost of walking through a door with an object in the way).

The second main component is a reward function that captures each agent’s de-
sires. The enforcer’s reward function RE represents their desire to affect the decider’s
behavior. That is, RE(a) is the reward the enforcer obtains when the decider takes
action a. The decider’s reward function RD represents their own personal desires:
RD(a) is the decider’s personal reward when choosing action a (e.g., the decider’s
reward when they choose door A in Figure 5.2).

Our computational framework uses these cost and reward functions to build a
model of recursive social reasoning, where the enforcer decides how to move objects
by thinking about what action they hope the decider will take, and the decider de-
cides what action to take by inferring what the enforcer wants, based on how they
manipulated the objects in the scene. Below, we present the logic of our model, start-
ing with the grounding level of the recursive structure. A more detailed presentation
of our model can be found in SM.

5.2.1 Non-mentalistic decider

The lowest level of our model consists of a non-mentalistic decider D0 that represents
an agent lacking any awareness that objects in a scene may have been intentionally
manipulated by another agent. This decider therefore chooses what to do based on the
physical properties of the scene alone. Given a scene s, the non-mentalistic decider’s
utility for taking action a is given by:

UD0(a; s) = RD0(a)− CD0(a, s),

where RD0(a) is the reward that the decider obtains from taking action a and CD0(a, s)

is the cost they incur from taking that action in scene s.
We transform this utility function into a probability distribution over actions by

applying the softmax function:

pD0(a|s) ∝ exp(UD0(a; s)/τ).

The softmax function is a standard method for transforming utility functions into
probability distributions, guided by a temperature parameter τ ∈ (0,∞). When τ is
low, the decider consistently chooses the actions that maximize the utility function
(converging towards optimal behavior as τ → 0). When τ is high, the decider’s
behavior becomes noisier, and the agent is more likely to select actions that are not
necessarily the best ones (converging towards random behavior as τ → ∞).

5.2.2 Simple enforcer

The next level of our model consists of a simple enforcer E0 who reasons about
the non-mentalistic decider D0. That is, this enforcer determines what to do under
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the assumption that the decider will not realize that the objects contain any social
information and will instead see them as nothing more than physical obstacles.

Formally, suppose the world is in some initial state s0 and the enforcer wants
the decider to take action a (e.g., the initial scene might be Figure 5.2a, and the
enforcer wants the decider to choose door A). To do this, the simple enforcer considers
different possible scenes s (e.g., Figures 5.2d-h) and evaluates them through the utility
function:

UE0(s; a, s0) = RE0(a)pD0(a|s)︸ ︷︷ ︸
Expected reward

when decider takes
action a in scene s

−

Cost of transforming
scene s0 into scene s︷ ︸︸ ︷
CE0(s0, s).

Here, the first term (RE0(a)pD0(a|s)) is the enforcer’s expected reward (i.e., the reward
they obtain when the decider takes action a, weighted by the probability that the
decider takes this action). This enforcer’s ability to predict how the decider will
act, pD0(a|s), is computed using the non-mentalistic decider model (Equation 5.2.1,
Section 5.2.1). This term is then balanced against the cost CE0(s0, s) that the enforcer
incurs in transforming scene s0 into scene s. Combined, the first term leads the
enforcer to prefer scenes where the decider is more likely to take the desired action,
and the second term leads the enforcer to favor minimal scene changes over drastic
ones.

5.2.3 Mentalistic decider

Having defined the simple enforcer E0, we can now specify a mentalistic decider D1

that reasons about this enforcer’s choices. That is, this decider infers why the enforcer
decided to modify the scene, and takes this into account when deciding what to do.

Formally, the mentalistic decider assigns a utility to each action via

UD1(a; s0, s, ϕ) = RD1(a)− CD1(a, s)︸ ︷︷ ︸
Decider’s egocentric
costs and rewards

+

Decider’s allocentric
preferences︷ ︸︸ ︷

ϕ < ℓ(a|s0, s) > .

The first two terms (RD1(a) and CD1(a, s)) capture the decider’s egocentric rewards
and costs for taking action a in scene s, respectively (identical to the utility function
for the non-mentalistic decider; Equation 5.2.1, Section 5.2.1).

The final term, ϕ < ℓ(a|s0, s) >, represents the decider’s utility for acting in ac-
cordance with the enforcer’s preferences, also known as the decider’s “adopted utility”
(Powell, 2022). Here, < ℓ(a|s0, s) > is the decider’s belief that the enforcer wants
them to take action a, based on the change from scene s0 to scene s. This term is
then weighted by a real-valued cooperation parameter ϕ that captures the decider’s
motivation to pursue, act against, or ignore the enforcer’s preferences. When ϕ is

7



positive, the decider is motivated to act in a way that is consistent with the enforcer’s
preferences. Conversely, when ϕ is negative, the decider is antagonistic and prefers to
act against the enforcer’s preferences. Finally, when ϕ = 0, the decider acts egocen-
trically (becoming the same model as the non-mentalistic decider), and treats objects
as physical constraints, ignoring why the enforcer might have positioned them there.

Critically, the decider does not know a priori what the enforcer wants them to
do (i.e., the decider does not have direct access to ℓ(a|s0, s)). This term is therefore
inferred by considering the enforcer’s possible reward functions:

< ℓ(a|s0, s) >=

∫
RE0

∈R
1argmaxRE0

(a)p(RE0|s0, s).

This equation adds up the probability of every possible reward function RE0 ∈ R

where a is the preferred action. For each of these reward functions, its probability,
p(RE0|s0, s), is inferred by reasoning about the enforcer’s choice to change scene s0
into scene s:

p(RE0|s0, s) ∝ pE0(s|RE0 , s0)p(RE0),

with the likelihood pE0(s|RE0 , s0) computed using the simple enforcer model (i.e., it
is given by the softmax of Equation 5.2.2, Section 5.2.2).

Note that this formulation assumes that the mentalistic decider knows both the
scene’s initial and final states (s0 and s). This allows deciders to infer the enforcer’s
rewards by reasoning about the costs that were introduced. In more realistic sit-
uations, it is more likely that deciders have a prior distribution over scenes (p(s0))
rather than perfect knowledge about the initial scene s0. Returning to the example in
the introduction, for instance, when encountering a broom placed across an entrance,
a decider may not know where the broom was situated before an enforcer placed it
across the door, but they may believe it was more likely that it was positioned else-
where. Modeling prior expectations about scene distributions is beyond the scope of
our model, but we return to the implications of this assumption in the Discussion.

5.2.4 Complex enforcer

Finally, we can define a complex enforcer E1 that modifies scenes by thinking about a
mentalistic decider D1. This model is identical to the simple enforcer (Section 5.2.2),
with the only difference that it predicts the decider’s behavior using the mentalistic
decider model (Section 5.2.3), rather than the non-mentalistic one. That is, the term
pD0(a|s) from Equation 5.2.1 is now replaced by pD1(a|s, ϕ) (i.e., the softmax of the
utility function in Equation 5.2.3). This enforcer can therefore manipulate scenes
under the assumption that the decider will attempt to decode their preferences.
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5.2.5 Model implementation details

The computational framework specified above captures the proposal that people ex-
tract costs from physical scenes (i.e., what is the cost of taking different actions, and
what costs did another agent incur in positioning the objects), and use them to make
mental-state inferences. Because past work has already studied how people might
infer costs from physical scenes (Yildirim et al., 2019), our interest is in testing how
cost manipulations shape communication with objects. Therefore, in our model, we
directly provide the costs associated with each scene change, which enables us to focus
on the contribution of cost-based reasoning.

In principle, the parameters in our model can all be real-valued. For simplicity,
we bounded costs and rewards to integers in the range 0 to 9. This enables us
to easily interpret the range with 0 being null costs and rewards, and 9 being the
highest possible costs or rewards that agents can have. We next set the cooperation
parameter ϕ to take on integers between -25 and 25, which allows the model to
consider extreme cooperative and adversarial cases (see Oey et al., 2022, for related
work on adversarial mental-state reasoning). Our model code is available online at
https://osf.io/57n4g.

5.3 Model Analysis

Our first goal is to use our computational model to test whether our proposal can
capture the emergence and use of low-cost communicative blockers (LCCBs). If our
model failed to replicate this phenomena, this would imply that our account is in-
correct. Specifically, our analyses consist of a set of simulations that test whether
the enforcer and decider in our model can reproduce our target phenomena—creating
and understanding LCCBs (inspired by those in Figure 5.1).

To explore our model dynamics, we focused on the same simple domain with two
doors—door A and door B—and an enforcer that wants the decider to choose door
A (Figure 5.2). We assume that the initial scene s0 has a set of objects between the
two doors, such that the objects do not initially block either door, and placing an
object in front of either door is equally costly (Figure 5.2a). For simplicity, we also
assume that the cost the enforcer incurs in placing an object in front of a door is the
same as the cost that the decider incurs when moving that object out of the way. To
analyze the core dynamics of the model, we simulated a situation where the enforcer
was maximally motivated to affect the decider’s behavior (setting their reward to 9),
and where the decider was also very cooperative (setting ϕ = 10). We further set
the softmax parameter to a minimum in order to remove any noise in the inferences
(setting τ = 0.1). We then tested our model’s performance by varying the decider’s
relative preference for different options.

Figure 5.2a shows a visual depiction of the initial state, and Figures 5.2d-h shows
five possible scene transformations that the enforcer could produce (stacking one,
three, or four objects in front of door B alone, or also stacking any number of objects
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Figure 5.2: Example event used to illustrate model performance. The environment consists
of two doors and a stack of boulders between them. The enforcer’s goal is to reposition the
boulders to get the decider to choose door A. (a) Initial scene state. (b) Enforcer behavior.
The x-axis shows the decider’s preference for door B (negative values indicating a preference
for door A) and the y-axis shows the number of boulders the enforcer stacks in front of door
B (negative values indicating stacking objects on door A). The simple enforcer (blue line)
builds the smallest possible physical barrier that will dissuade the decider. The complex
enforcer (yellow line) places a single boulder in front of door B, even when the decider has a
strong preference for going through it. (c) Deciders with a preference for door B reacting to
boulders placed in front of that door. The non-mentalistic decider (blue line) slowly becomes
more likely to choose door A as a function of how many boulders are blocking door B. The
mentalistic decider (yellow line) recognizes the meaning of a single boulder and adjusts their
behavior, immediately forgoing their preferred door B and choosing door A instead. (d-h)
Visualization of some of the different scenes the enforcer could produce.

in front of door A). To understand our model behavior, we began by contrasting the
simple and complex enforcers. Figure 5.2b shows how many objects each enforcer
chooses to stack in front of door B (the door they hope the decider will avoid) as a
function of the decider’s preference for this door. When the decider already prefers
door A (negative decider preference along the x-axis in Figure 5.2b), neither enforcer
moves any objects. This reflects the enforcers’ confidence that the decider will take
door A, making any involvement unnecessary.

When the decider prefers door B (positive decider preference along the x-axis
in Figure 5.2b), the enforcers begin to place objects in front of the door, producing
two different types of behavior. The simple enforcer expects the decider to choose
a door based only on their egocentric costs (how difficult is it to walk through each
door?) and rewards (how much does the decider want to walk through each door?).
Consequently, this enforcer stacks the minimum number of objects necessary to push
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the decider’s choice towards door A. This is captured in Figure 5.2b, where the blue
line shows how the simple enforcer stacks more objects as the decider’s preference
becomes stronger. This behavior reflects a non-communicative barrier-building strat-
egy, where the enforcer is attempting to make it just hard enough for the decider to
cross through door B, with the hope that this added cost will shift their preference
towards door A.

In contrast to the barrier-building strategy from the simple enforcer, the complex
enforcer places a single object in front of door B (as in Figure 5.2d), even when the
decider really prefers that door (yellow line in Figure 5.2b). We interpret this as the
kind of communicative strategy that we aim to explain (reminiscent of Figure 5.1):
The strategy succeeds not because it imposes a high cost on deciders, but because it
efficiently reveals the enforcer’s mental states. In these cases, the enforcer knows that
the decider’s egocentric utilities will favor door B, because the single object imposes
a negligible cost. The enforcer nonetheless chooses to place a single object in front
of door B because they believe that the decider will infer that they are supposed to
take door A instead.

Returning to our motivating examples (Figure 5.1), this behavior resembles actions
like placing a plastic chair to mark that a parking spot is taken. Here, a plastic chair
does little to prevent someone from using the parking spot: moving the chair out of
the way is easy, and the cost is probably insufficient to overcome a driver’s desire to
find a parking spot. However, the object is effective because it reveals that whoever
placed the chair is requesting that their parking spot be respected.

Figure 5.2c shows the behavior of our decider model. The non-mentalistic decider
responds to the physical costs alone, becoming more likely to abandon their preferred
door as a function of how many objects are blocking it. This is visualized by the blue
line in Figure 5.2c, which shows a continuous preference change as a function of the
number of objects blocking their preferred door. By contrast, the mentalistic decider
shows a sharp discontinuity: A single object in front of their preferred door is enough
for them to understand that they should avoid that door. This is visualized by the
yellow line in Figure 5.2c, where the decider shows a rapid change in strategy as soon
as a single object is in front of their preferred door. Together, these results show how
our model gives rise to enforcers who use objects in a communicative manner and
deciders who can infer the communicative meaning of these objects.

5.4 Experiment 1: Quantitative model evaluation

Having established that our account can replicate the qualitative use and recognition
of low-cost communicative blockers (LCCBs), we next test whether our model’s exact
inferences match human intuitions. That is, our model predicts quantitative patterns
about how strong people’s intuitions should be in different displays. If participants
can interpret LCCBs, but do so in a different way than our model does, the resulting
large discrepancies between our model inferences and participant judgments would
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falsify our account.
In Experiment 1, participants saw a two-dimensional gridworld of a fruit farm

with an entrance, pomegranate groves, pear groves, and a set of boulders placed by a
farmer to protect their pomegranates from nearby hikers (farmers corresponding to
enforcers and hikers to deciders from our Computational Framework).

We tested participants in two conditions (Figure 5.3). In the non-mentalistic
condition, hikers believe that the boulders are natural constraints, devoid of social
meaning, and farmers plan for how many boulders to place accordingly. We therefore
expect participants to infer that, the more boulders the farmer places, the more she
believes that hikers want to take the pomegranates. We model this condition using the
non-mentalistic decider model (Section 5.2.1) and the simple enforcer model (Section
5.2.2).

In our second condition, the mentalistic condition, hikers will always know that
the boulders were placed by a farmer, and use the costs imposed by these objects to
infer the farmer’s preferences. In this condition, a single boulder does not necessarily
imply an expectation that hikers do not like pomegranates (as would be implied in
the non-mentalistic condition). Instead, a single boulder might reveal that the farmer
expects hikers to infer that they should stay away and act accordingly. By contrast,
if the farmer placed multiple boulders, this would reveal that she expects hikers to
prefer pomegranates and be uncooperative (otherwise, a single communicative boulder
would have sufficed). We model this condition using the mentalistic decider model
(Section 5.2.3) and the complex enforcer model (Section 5.2.4).

All studies were approved by Yale’s IRB (protocols “Culture and Cognition”
#2000022403 and “Online reasoning” #2000020357). Data collection was obtained
in the following experiment order: 3a (meaning inference), 3b, 2, 4, 1, 1 replica-
tion, 3a (unusualness ratings), and 3c. Our experimental procedure, stimuli, data,
analyses, pre-registrations (for Experiments 1 replication, 2, 3a, and 3c), and supple-
mental materials are available at https://osf.io/57n4g. This manuscript includes
all experiments, manipulations, and measures in this line of research.

5.4.1 Participants

80 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (n = 40 per condition; M = 34.81 years, SD = 10.31 years).

5.4.2 Stimuli

Stimuli consisted of 27 10-by-10 gridworlds, with two fruit groves (pears and pomegranates),
a hiker, and a set of boulders (see Figures 5.5a-c for examples). The stimuli were de-
signed by parametrically varying two factors: the distance between the hiker and the
groves (i.e., the natural cost of the environment; 5, 7, and 9 squares away) and the
number of boulders blocking the pomegranates (i.e., the artificial cost introduced by
the farmer; 1, 2, or 3 boulders). The hiker’s starting position was randomly selected
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to be at one of the four corners, and the fruit groves were randomly placed on the
two adjacent corners relative to the hiker.

5.4.3 Procedure

Participants read a brief cover story explaining that they would see hikers in different
farmlands with pear and pomegranate groves (see Figure 5.3 for paradigm schematic).
The farmers, who were absent, did not mind hikers taking pears but they wanted to
protect their pomegranates. To achieve this, farmers placed boulders in front of their
pomegranate groves (see Figures 5.5a-c for examples). Participants then completed a
multiple-choice five-question quiz (see online OSF repository for questions) to ensure
they understood the task. Participants that answered at least one question wrong
were sent to the beginning of the cover story to try again. Participants that failed
the questionnaire twice were not permitted to participate in the study.

Figure 5.3: Visual schematic of Experiment 1 cover story. Participants learned that a
farmer (purple agent) wanted to protect their pomegranates and placed boulders to block
the way before leaving. After leaving, a hiker would arrive and decide which fruit to take. In
the non-mentalistic condition, the hikers treat the boulders as natural constraints, and they
therefore decide what to do without thinking about the farmer. In the mentalistic condition,
the hikers know that a farmer must have placed the boulders, and use this to infer what to
do.

Participants in the non-mentalistic condition were told that hikers thought the
boulders were natural constraints, and that farmers planned how many boulders to
place accordingly. That is, the farmer expected hikers to realize that the boulders
make it harder to reach a fruit grove, but assume that this was simply a feature
of the terrain, rather than an intentional design. In each trial, participants saw an
arrangement of boulders and they were asked how much the farmer expected hikers to
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Figure 5.4: Experiment 1 results. Each point represents a judgment, with model pre-
dictions on the x-axis and participant judgments on the y-axis. Participants in the non-
mentalistic condition (NM) condition inferred the hiker’s expected preferences, and partici-
pants in the mentalistic condition (M) additionally inferred the hiker’s expected cooperative-
ness (ϕ). (a) Correlation between our full model and participant judgments. (b) Correlation
between lesioned models and participant judgments. Model lesions include removing the
influence of cost from the decider (left) and removing the influence of cost from the enforcer
(right).

like pomegranates (“How much does this farmer think that hikers like pomegranates?”,
using continuous sliders ranging from “not at all” to “very much”).

Participants in the mentalistic condition were told that hikers would always know
that a farmer placed the boulders intentionally, and that farmers planned how many
boulders to place accordingly. That is, the farmer expected hikers to know that the
boulders make it harder to reach a fruit grove, and that these boulders were placed
intentionally by someone. In each trial, participants saw an arrangement of boulders
and they were asked how much the farmer expected the hiker to like pomegranates. In
addition, because the complex enforcer and mentalistic decider include a cooperation
parameter ϕ (i.e., the adopted utility weight; Powell, 2022), participants were also
asked whether the farmer expected the hiker to be cooperative (“How cooperative
does this farmer think hikers are?”, using a continuous slider ranging from “not at all”
to “very much”).

All participants completed the same 27 trials (trial order randomized across par-
ticipants), where we varied both the initial cost of obtaining each type of fruit (by
manipulating the initial distance from the hiker) and the number of boulders that the
farmer added (ranging from 1 to 3; see Stimuli).

5.4.4 Model Predictions

Our model’s parameters were set prior to data collection (and reflected in the pre-
registration of the Experiment 1 replication; see Section 5.2.5 and SM at https:
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//osf.io/57n4g/ for details). For each dependent variable in our task we computed
our model’s posterior predictive distribution, and used the expected value as the final
model prediction.

5.4.5 Results

(a) (b) (c)
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Figure 5.5: (a-c) Example stimuli from Experiment 1. In these examples, both fruit groves
were equally far and only varied on the number of boulders a farmer placed. (d-f) Model
predictions and participant judgments from the non-mentalistic condition in purple and
blue, respectively. (g-i) Model predictions and participant judgments from the mentalistic
condition in purple and blue, respectively. Inference type is along the x-axis and the inferred
value is along the y-axis. Error bars are bootstrapped 95% CIs.

Our model and participant judgments showed an overall correlation of r = 0.97

(CI95%: 0.95− 0.98; Figure 5.4a). A pre-registered replication of this study produced
identical results (r = 0.98; CI95%: 0.96− 0.98; see SM for details). The fact that our
model captures the fine-grained structure of people’s inferences suggests that their
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inferences resembled the ones obtained by reasoning about the farmer’s desires via
recursive social reasoning.

Figure 5.5 shows three example trials that highlight the inferences that our model
and participants made. In Figures 5.5a-c, the hiker’s distance to pomegranates and
pears is matched (making the initial cost identical) and the number of boulders in
front of the pomegranates varies from 1 to 3. In the non-mentalistic condition, the
number of boulders should reveal how much the farmer thinks hikers will want to
get the pomegranates (because the purpose of the boulders is to introduce a physical
cost that outweighs the hikers’ desires). Figures 5.5d-f show this effect in both our
model and participant reward inferences (with each plot corresponding to the stimuli
directly above it; e.g., panel (d) corresponding to map (a)). As the number of boulders
increased, participants and our model inferred a stronger preference for pomegranates.

In the mentalistic condition, the boulders not only impose a physical cost, but
allow hikers to infer the farmer’s preferences. Therefore, a single boulder (Figure 5.5g)
does not necessarily imply that hikers must not like pomegranates that much (as it
did in the non-mentalistic condition; Figure 5.5d). Instead, the farmer may have used
a single boulder to reveal that they did not want hikers to take the pomegranates.
Consistent with this, both participants and our model inferred that hikers could have
a higher desire for pomegranates (compare Figures 5.5g and 5.5d), but were highly
cooperative. That is, participants and our model inferred that a single boulder was
effective because it revealed the farmer’s preferences to cooperative hikers (despite
its cost not being high enough to outweigh their preferences). This reward difference
across conditions is further visualized in Figure 5.6, and was significantly different
across conditions (∆R = 0.24; p < 0.001 from a two-tailed t-test).

When the number of boulders blocking the pomegranates increases (Figures 5.5h-
i), the farmer’s additional actions (placing more than one boulder) can be explained
by inferring that hikers must really want the pomegranates and not be particularly
cooperative (given that they will be able to infer that the farmer wants them to
stay away). Consistent with this, both our model and participants infer a stronger
hiker desire and a lower cooperativeness as the number of boulders increases (see SM
for additional results of a linear mixed-effects regression predicting these participant
reward inferences as a function of boulder count and condition).

Alternative models

While our model captured participant inferences with quantitative accuracy, it is
possible that participants reached similar inferences through simpler mechanisms. To
test this, we considered two alternative models. A first possibility is that people
focus only on an object’s position, without considering the costs that it might impose
on observers. In our experiment, this means that hikers do not consider the cost
of navigating around boulders. We call this model the Decider Cost Lesion as it is
similar to our model with the difference that it does not reason about the cost that
objects impose on deciders. Figure 5.4b (left) shows how this model was no longer able
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Figure 5.6: Reward inferences across the non-mentalistic condition and mentalistic con-
dition in Experiment 1. The number of boulders placed by the farmer is on the x-axis and
the reward participants inferred is on the y-axis. Error bars are bootstrapped 95% CIs.

to explain participant judgments (r = 0.29; CI95%: 0.08− 0.47), and was also reliably
worse than our main model (∆r = 0.68; CI95%: 0.49 − 0.89). This result confirms
that the cost imposed on deciders is critical for capturing human-like inferences.

A second possibility is that people do consider the costs that an object imposes
on their actions (e.g., detecting that an object is making it harder for them to get
a certain fruit), but they do not consider the effort that someone had to incur in
positioning the object. In our experiment, this means that people do not think
about the cost farmers incur when placing boulders. We call this model the Enforcer
Cost Lesion as it is similar to our model with the difference that it does not reason
about the cost the enforcer incurs. Figure 5.4b (right) shows how this lesioned model
compares to participant judgments. Although this model performed worse than our
main model (∆r = 0.06; CI95%: 0.03 − 0.10), it was nonetheless able to capture the
pattern of inferences about deciders quite well (r = 0.91; CI95%: 0.86− 0.94).

These results suggest that participant inferences may not depend as heavily on
the cost incurred by the enforcer (i.e., the farmer). We believe this is intuitive for the
situations that we focused on. For instance, when encountering a broom positioned
directly across a door, we intuitively focus on the cost that the broom imposes on us,
rather than thinking about the cost the enforcer incurred. At the same time, Figure
5.4b (right) reveals that this lesioned model nonetheless fails to capture a subset of
participant intuitions that our main model was able to capture. Specifically, this
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lesioned model over-estimated hikers’ cooperativeness when compared to humans in
trials with two boulders (visualized as a cluster of orange points that falls most
distant from the best-fit line in Figure 5.4b, right). This is because, according to this
lesioned model, placing three boulders is as easy as placing two boulders. Therefore,
the farmer choosing not to place an extra boulder at no cost would only be reasonable
if the hikers were highly cooperative, to the point that placing a single boulder was
guaranteed to be as effective as placing more boulders to block the way. Together, this
analysis suggests that the cost incurred by enforcers is less critical for capturing how
we infer the communicative meaning of an object, but that people are nonetheless
sensitive to it, and use it to infer other agents’ cooperativeness. Overall, these lesions
show how considering the cost that enforcers incur in positioning objects, and how
these objects also impose a cost on deciders, are key to explaining how participants
reasoned about objects in our experiment.

5.5 Overview of Experiments 2-4

Our model analyses and Experiment 1 show that people can derive inferences that are
quantitatively similar to those from our model. While these results show that people
can make these types of social inferences, they do not imply that this is what people do
when encountering communicative objects. In Experiments 2-4, our goal is therefore
to test an alternative hypothesis: Could simple conventions without inference explain
the use of communicative objects in their entirety? That is, conventional knowledge
is undoubtedly critical to the everyday use of communicative objects. Our goal is
therefore not to question its importance, but to ask what happens when conventional
knowledge is unavailable, such as when we encounter an unfamiliar object that might
have a communicative purpose. In these cases, do people rely on social inferences like
the ones we proposed? Or are they unable to make any conclusions given the absence
of an explicit convention?

Given that people will use conventional knowledge when it is available, our experi-
ments here focus on objects that are not associated with a pre-existing communicative
meaning. We begin by testing two predictions. First, if the meaning of communica-
tive objects were based on explicit convention alone, then people should detect an
object as communicative only when they have been explicitly taught about its mean-
ing (therefore falsifying our account). By contrast, our account predicts that people
should be more likely to associate low-cost novel objects with a communicative pur-
pose, relative to novel objects that impose no cost (as these fail to reveal the mental
states of whoever positioned the object). We test this prediction in Experiment 2.
Second, if the meaning of objects were driven by explicit pedagogy and convention
alone, then people should be unable to infer the meaning of a novel object, even
when they know that the object has a communicative purpose (therefore falsifying
our account). By contrast, our account predicts that people should be able to infer
the communicative meaning of an object when its placement (i.e., the cost it imposes)
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reveals the enforcer’s mental states. We test this prediction in Experiment 3. Finally,
if people are engaging in social inferences to infer the meaning of novel objects, our
work brings forth the question of how quickly these meanings might become conven-
tionalized. In Experiment 4, we test the idea that people might be able to quickly
treat the meaning of a novel object as conventional.

5.6 Experiment 2: Are objects that impose a cost
more likely to be communicative?

If people’s reasoning about low-cost communicative blockers is driven entirely by ex-
plicit object-meaning conventions, then people should report that an object is com-
municative only when they have been explicitly taught its meaning. In Experiment
2, we therefore tested whether people believe that objects that impose a low cost on
deciders are more likely to be communicative relative to objects that do not impose
a cost, as our account predicts but the explicit convention account does not.
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Figure 5.7: (a-b) Example stimuli from Experiment 2. In both panels, the left side shows
a low-cost door and right side shows a no-cost door. (c) Experiment 2 results. The blue
bar represents the percentage of participants that associated the low-cost door with having
a communicative purpose. Error bars are bootstrapped 95% CIs.

5.6.1 Participants

80 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (M = 37.84 years, SD = 12.22 years). 14 additional participants
were recruited and replaced for failing our inclusion criteria (see Results).

5.6.2 Stimuli

Stimuli consisted of eight images of pairs of doors, with each pair consisting of a “low-
cost door” and a “no-cost door” (e.g., Figures 5.7a-b). Each of the eight pairs was
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associated with one of eight objects that are not conventionally used to communicate:
a plant, a chair, a pile of books, a pile of cinderblocks, some tape, some meter sticks,
a hat, and a fishbowl tied to a tack on a door frame (see online OSF repository for the
full stimuli set). In the low-cost doors, the object was placed directly in the middle
of the doorway (e.g., Figures 5.7a-b, left), and in the no-cost doors, the object was
placed next to the door, not blocking the way (e.g., Figures 5.7a-b, right). Half of
the door pairs were open and the other half were closed.

5.6.3 Procedure

Participants were asked to imagine leaving an office and encountering a pair of doors,
each with an object nearby. Participants then answered a simple multiple-choice
attention-check question (“What objects are in front of the doors?”). Participants that
answered incorrectly were sent to the beginning of the cover story and not permitted
to access the experiment until they answered correctly.

Participants then saw a single trial containing a low-cost door and a no-cost door,
both with the same object nearby (see Figures 5.7a-b for examples; door order ran-
domized across participants). Participants were asked, “Which door do you think
someone was trying to tell you something?”, followed by a manipulation check (“Which
door requires more work to walk through?”) and an inclusion question (“Do you think
you would be able to walk through this door if you wanted to?”). These questions were
always presented in the same order (see online OSF repository for the full procedure
details).

5.6.4 Results

Participants who did not think they could walk through the doors were excluded
from the study and replaced (as our interest is in the inferences people make when
objects are not seen as insurmountable physical constraints; n = 14; 14.89% exclusion
rate). Of our final sample, 72.50% of participants reported that the low-cost door
was more likely to be communicative (CI95%: 62.50% − 82.50%; p < 0.001 from a
two-tailed binomial test; Figure 5.7c), rather than performing at chance, as expected
by the explicit pedagogy account (see SM for a supplemental analysis confirming this
result). Our exclusion rate (14.89%) was lower than recent estimates of attentiveness
on Mechanical Turk (estimated to be at approximately 20%; Arechar and Rand,
2021), suggesting that these participants were simply inattentive. However, these
participants showed the same qualitative pattern of responses as those included in
the task (see SM for details on excluded participants). It is therefore possible that
these participants were attentive but did not interpret our inclusion question (“Do you
think you would be able to walk through this door if you wanted to?”) as referring
to physical plausibility alone, integrating social expectations as well (given the heavy
social focus of the task).

20



5.7 Experiment 3a: Are low-cost objects interpreted
as communicative blockers?

Having found that people are more likely to interpret a low-cost object as commu-
nicative, in Experiment 3a, we next test what meaning people are more likely to
associate with it. If the object is unfamiliar, the explicit convention account predicts
that participants should be at a loss about what it means, given the absence of an
established object-meaning mapping. Instead, if people are making inferences about
why someone would place the object to impose a cost, they should infer that the
object is more likely to mean that they should avoid the door.

5.7.1 Participants

160 U.S. participants (as determined by their IP address) were recruited via Amazon
Mechanical Turk (n = 80 per condition; M = 34.85 years, SD = 8.38 years). 17
additional participants were recruited and replaced for failing our inclusion criteria
(see Results).

5.7.2 Stimuli

Stimuli consisted of 16 images of pairs of doors, with each pair consisting of an empty
door and a door with an object nearby (e.g., Figures 5.8a-b; using the same objects
from Experiment 2). In the “low-cost pair”, the object was placed directly in the
middle of one of the doorways (e.g., Figure 5.8a), and in the “no-cost pair”, the object
was placed next to one of the doors, not blocking the way (e.g., Figure 5.8b). Half of
these door pairs were open and the other half were closed.

5.7.3 Procedure

The procedure was similar to Experiment 2. Participants were asked to imagine leav-
ing an office building and finding two identical exits. Participants then saw that one
of the doors had an object nearby, and they were told that it was unclear whether
someone wanted them to take that door or to avoid it. Participants were then asked
a multiple-choice attention-check question: “What is the only difference between the
two exits?” Participants next saw a pair of doors (either a low-cost pair for partici-
pants randomly assigned to the low-cost condition or a no-cost pair for participants
randomly assigned to the no-cost condition; door order randomized across partici-
pants), and were asked: “What do you think someone was trying to tell you about
the door with the object?” (possible responses: “You should walk through the door
with the object” or “You should not walk through the door with the object”).
Participants then responded to the same manipulation-check and inclusion questions
from Experiment 2.
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5.7.4 Results

Participants who said the empty door was harder to walk through were excluded
from the study and replaced (n = 17; 9.60% exclusion rate). Of our final sample,
87.50% of participants in the low-cost condition inferred that they were supposed to
avoid the door with the object (CI95%: 80.00%− 93.75%; p < 0.001 from a two-tailed
binomial test). By contrast, only 60.00% of participants in the no-cost condition
inferred that this door should be avoided (CI95%: 48.75% − 70.00%; p = 0.093 from
a two-tailed binomial test1), a proportion not significantly different from chance.
Moreover, the number of participants inferring that they should avoid the door was
significantly higher in the low-cost condition relative to the no-cost condition (p <

0.001 by Fisher’s exact test). See SM for additional results showing that this effect
cannot be explained by appealing to the idea that people believe that more ‘unusual’
arrangements of objects are more likely to signal avoidance. The fact that participants
did not perform at chance in both conditions suggests that people do not rely purely
on conventional knowledge. The pattern of results from our excluded participants
was qualitatively consistent with that of participants included in the task (see SM for
details on excluded participants).

5.8 Experiment 3b: Replication with the Tsimane’

Experiment 3a suggests that people’s reasoning about low-cost communicative block-
ers cannot be reduced to explicit object-meaning conventions. However, it is possible
that these inferences are culture-specific. Because our model is built on simple aspects
of human cognition that are thought to be universal, the absence of these inferences in
other cultures would challenge our account. As a first step in exploring this possibil-
ity, we replicated a variation of Experiment 3a with the Tsimane’—a farming-foraging
group native to the Bolivian Amazon. The Tsimane’ live in non-industrialized com-
munities along the Maniqui river and have less exposure to market-integrated com-
munities compared to U.S. participants. Comparing the Tsimane’ and WEIRD par-
ticipants (Western, educated, and from industrialized, rich, and democratic countries;
Henrich et al., 2010) has helped identify cultural influences in color-word vocabulary
(Conway et al., 2020; Gibson et al., 2017) and music perception (McDermott et al.,
2016), and has also helped rule out cultural influences in other domains, such as the
stages of number-word learning in children (Piantadosi et al., 2014; Jara-Ettinger
et al., 2017) and the ways in which people identify communicative action (Royka
et al., 2022). We therefore sought to test the Tsimane’ as a way to explore if these
inferences also emerge in a culture that is substantially different from the U.S.

1Our pre-registered analysis proposed to use logistic regressions to study this effect. We instead
present binomial tests for clarity, but the results are identical under our pre-registered analysis and
can be found in SM.
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5.8.1 Participants

133 Tsimane’ adults were recruited in their local communities in the Bolivian Amazon
(M = 33.12 years, SD = 15.40 years). 17 additional participants were recruited but
excluded from the study for failing to complete the study (see Results).

5.8.2 Stimuli

Stimuli consisted of six images of doors, each with an object in front of it (e.g.,
Figures 5.7a-b). We used a subset of the objects used in Experiment 3a that Tsimane’
participants were familiar with (as determined by our interpreters) while remaining
unconventional as communicative objects: a plant, a chair, and a pile of cinderblocks.
Each object was associated with two different doors: a “low-cost door”, where the
object was placed directly in the middle of the doorway (e.g., Figure 5.7a, left), and
a “no-cost door”, where the object was placed next to the door, not blocking the way
(e.g., Figure 5.7a, right). Half of these doors were open and the other half were closed.

5.8.3 Procedure

The procedure was adapted from Experiment 3a to be more intuitive for our partic-
ipants, based on feedback from our interpreters. Participants were asked to imagine
deciding to enter a friend’s house through one of two possible doors. Participants were
then shown a low-cost door and a no-cost door sequentially (order counterbalanced
across participants, with different objects used for each door) and were asked: “Do
you think the owner wants you to enter or stay away?”

5.8.4 Results

Participants that failed to complete both trials were excluded from the study (n =

17; 11.33% exclusion rate; see SM for details on excluded participants). Like U.S.
participants, Tsimane’ participants inferred that they should avoid a door when the
object was minimally blocking the door (85.71%; CI95%: 79.70%− 91.73%; p < 0.001

from a two-tailed binomial test), but not when the object was on the side of the door
(30.08%; CI95%: 22.56%− 38.35%; p < 0.001 from a two-tailed binomial test).

5.8.5 Discussion

These results suggest that, like U.S. participants, Tsimane’ participants also inferred
avoidance from objects that impose a low cost. Critically, this experiment used objects
that were familiar to the Tsimane’, but not typically used by them to communicate (as
determined by our local interpreters). This approach followed the same logic as our
design with U.S. participants, which also used familiar objects but, critically, not ones
typically used to communicate. This enabled us to maximize equivalence (Matsumoto
and Yoo, 2006; Van de Vijver and Leung, 2021; Poortinga, 1989)—the goal of reaching
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Figure 5.8: (a) Example stimuli from the low-cost condition in Experiment 3a. (b) Example
stimuli from the no-cost condition in Experiment 3a. (c) Experiment 3a results. The blue
bars represent the percentage of U.S. participants that selected the empty door as a function
of condition. (d) Experiment 3b results. The blue bars represent the percentage of Tsimane’
participants that inferred that they should not go through the door as a function of door
type. Error bars are bootstrapped 95% CIs.

similarity in conceptual meaning across groups to support meaningful comparisons.
At the same time, a stronger test of our hypothesis would have included entirely
novel objects, which would have allowed us to test the nature of these inferences
without any possible influence from prior object knowledge. These results, therefore,
only provide evidence that people can infer the communicative meaning of familiar
objects that are not typically communicative, and we do not know if these inferences
would extend to entirely novel objects.

5.9 Experiment 3c: Inferences from conventional com-
municative blockers

In Experiments 3a and 3b, we found evidence that people are sensitive to the cost an
object imposes when reasoning about its potential communicative meaning. Impor-
tantly, these experiments used objects with no pre-existing communicative meaning
associated with them. Under our account, these inferences become critical when peo-
ple do not have a pre-existing convention, but may become less important when they
already know an object’s communicative meaning. In Experiment 3c, we replicated
Experiment 3a using conventional objects. If people are constantly making cost-based
inferences with all communicative objects, these results should replicate the pattern
of Experiment 3a: inferring avoidance in the low-cost condition, but not in the no-
cost condition. However, if these inferences are only at work when encountering novel
objects, people should report the conventional communicative meaning of the object
regardless of the cost that it imposes.
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Figure 5.9: (a) Example stimuli from the low-cost condition in Experiment 3c. (b) Example
stimuli from the no-cost condition in Experiment 3c. (c) Experiment 3c results. The blue
bars represent the percentage of U.S. participants that selected the empty door as a function
of condition. Error bars are bootstrapped 95% CIs (not visible in low-cost condition due to
participants performing at ceiling).

5.9.1 Participants

60 U.S. participants (as determined by their IP address) were recruited via Prolific
(n = 80 per condition; M = 35.72 years, SD = 12.48 years). 4 additional participants
were recruited and replaced for failing our inclusion criteria (see Results).

5.9.2 Stimuli

Stimuli consisted of six images of pairs of doors, with each pair consisting of an
empty door and a door with an object nearby (similar to those used in Experiment
3a, but using different objects; e.g., Figures 5.9a-b). Here we used objects that are
conventionally used as communicative blockers: a traffic cone, construction tape, and
a stanchion.

5.9.3 Procedure

The procedure was identical to that used in Experiment 3a, with the only difference
being the objects that participants saw. Participants then responded to the same
manipulation-check and inclusion questions from Experiment 3a.

5.9.4 Results

Participants who said the empty door was harder to walk through were excluded
from the study and replaced (n = 4; 6.25% exclusion rate), since the empty door is
never harder to walk through (see SM for details on excluded participants). Of our
final sample, 100.00% of participants in the low-cost condition inferred that they were
supposed to avoid the door with an object (CI95%: 100.00% − 100.00%; p < 0.001
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from a two-tailed binomial test2. 93.33% of participants in the no-cost condition
also inferred that the door should be avoided (CI95%: 83.33% − 100.00%; p < 0.001

from a two-tailed binomial test. While the number of participants inferring that they
should avoid the door was qualitatively higher in the low-cost condition relative to
the no-cost condition, this difference was not significant (p = 0.492 by Fisher’s exact
test). These results suggest that conventional knowledge was not driving our effect in
Experiment 3a, and that people may have a lower reliance on costs when interpreting
conventional communicative objects.

5.10 Experiment 4: Conventionalizing object mean-
ings

Experiments 2, 3a, and 3b suggest that people are sensitive to costs when reasoning
about an object with no pre-existing convention about its meaning. Experiment 3c
further shows evidence that this sensitivity disappears when the object already has a
conventional meaning associated with it. Experiment 4 presents an initial test of how
objects that trigger inferences might become conventionalized (no longer requiring
inference).

The process of associating objects with meaning might be particularly valuable,
as it would help people minimize cognitive demands (Birch and Bloom, 2007; Back
and Apperly, 2010; Keysar et al., 2000) and cognitive effort (Shenhav et al., 2017;
Kool and Botvinick, 2018). That is, people might do social inference to interpret
novel communicative objects, but treat them as conventional quickly afterwards. This
hypothesis would help explain why some communicative objects, like chairs to indicate
shoveled parking spots (e.g., Figure 5.1c), are used consistently (although not always;
e.g., Figure 5.1i), and is parsimonious with a resource-rational view of the mind
(Lieder and Griffiths, 2019; Griffiths et al., 2015).

Participants in Experiment 4 were first asked to infer the meaning of a low-cost
object, and then completed a second trial that either showed a door with a picture
of the same object (congruent condition) or a picture of a new object (incongruent
condition). The critical idea in this experiment is that the picture in the second
trial never imposes a cost. If participants interpret that picture independently, they
should perform at chance when asked what it means (replicating the responses in the
no-cost condition of Experiment 3a). Alternatively, people might infer the meaning
of the low-cost object in the first trial and then immediately treat it as conventional.
If so, then participants should report the same inference when they see a picture of
the same object (i.e., in the congruent condition) despite the object not imposing a
cost, but not when they see a picture of an unrelated object (i.e., in the incongruent
condition).

2Our pre-registered analysis proposed to use t-tests to study this effect. We instead present
binomial tests for clarity, but the results are identical under our pre-registered analysis and can be
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Figure 5.10: (a) Example stimuli from the first trial of Experiment 4. (b-c) Example
of a door from the congruent and incongruent condition relative to (a), respectively. (d)
Percentage of participants that inferred that they should avoid the door with the picture
as a function of condition in Experiment 4. (e) Average reported confidence rating in this
inference. Error bars are 95% bootstrapped CIs.

5.10.1 Participants

160 U.S. participants (as determined by their IP address) were recruited using Amazon
Mechanical Turk (n = 80 per condition; M = 36.13 years, SD = 10.90 years). 42
participants were recruited and replaced for failing our inclusion criteria (see Results).

5.10.2 Stimuli

Stimuli consisted of 16 images of pairs of doors, with each object (using the same
eight objects from Experiments 2 and 3a) associated with two pairs. In the “low-
cost pair”, the object was placed directly in the middle of one of the doorways (e.g.,
Figure 5.10a), next to an empty door. In the “symbol pair”, a picture of the object
was placed directly in the middle of one of the doorways (e.g., Figures 5.10b-c), next
to an empty door. Half of these door pairs were open and the other half were closed
(with the picture hanging from the top of the door frame when the door was open).

5.10.3 Procedure

The experiment began in an identical way to Experiment 3a, with the difference that
the cover story named the person who had positioned the communicative object. This
was done so that we could ensure participants understood that the communicative
objects came from the same agent across trials (name randomized across participants).

In the first trial, participants saw a low-cost pair of doors (e.g., Figure 5.10a) and
were asked: “What do you think name was trying to tell you about the door with
the object?” (with the same possible responses from Experiment 3a) and “How

found in SM.
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confident are you that that’s what name was trying to tell you?” (using a continuous
slider ranging from “not confident at all” to “very confident”).

Participants were told that their inference was correct (regardless of their answer)
and they were next presented with a symbol pair of doors. In the congruent condition,
one of the doors had a picture of the object from the previous trial (e.g., Figure 5.10b
after seeing Figure 5.10a, right, on the first trial). In the incongruent condition, one
of the doors had a picture of a new object (e.g., Figure 5.10c after seeing Figure 5.10a,
right, on the first trial). Participants were asked the same two questions from the first
trial, followed by the manipulation-check and inclusion questions from Experiments
2 and 3a.

5.10.4 Results

Participants who did not respond that the object in the first trial imposed a cost were
excluded from the study and replaced (n = 42; 20.79% exclusion rate), as our interest
is in how participants generalize the inferred meaning of objects that they perceived
as imposing a cost (see SM for details on excluded participants).

The first trial replicated our results from Experiment 3a, with 66.25% (CI95%:
58.75%− 73.75%) of participants inferring that they should avoid the door with the
object (p < 0.001 from a two-tailed binomial test). Participants reported an average
confidence rating of 76.96% (CI95%: 73.71%− 80.03%).

We next turned to our main question of interest. If participants treat the picture
in the second trial as a novel signal, they should perform at chance in both conditions,
as the picture does not impose a cost. By contrast, if participants assume that the
signaler was treating the object as a new convention, they should infer that the
door should be avoided in the congruent condition, but perform at chance in the
incongruent condition. As predicted, participants in the congruent condition judged
that the door with the picture should be avoided, despite the picture not imposing a
cost (67.50%; CI95%: 57.50%− 77.50%; p < 0.01 from a two-tailed binomial test). In
the incongruent condition, only 43.75% of participants inferred that the door should
be avoided (CI95%: 32.50% − 55.0%; p = 0.314 from a two-tailed binomial test).
Moreover, participants were significantly more confident in their interpretation of the
picture in the congruent condition (76.45%; CI95%: 71.46%− 81.09%) relative to the
incongruent condition (64.83%; CI95%: 58.78%− 70.81%; W = 3978, p < 0.01 from a
U -test).

5.11 Experiments 2-4 Discussion

Experiments 2-4 suggest that people can infer the potential communicative meaning
of an object in the absence of explicit pedagogy and convention. People’s inferences
were qualitatively consistent with our proposal, where communicative inferences are
guided by reasoning about others’ mental states. Is it possible that participants
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arrived to these inferences through simpler heuristics?
A first concern is that an object placed in front of a door might be more salient

than an object placed to the side. It is possible that participants in Experiment 2
thought that visually-salient objects (rather than low-cost objects) were more likely
to be communicative. However, that it is unclear why people would expect visual
salience to imply avoidance, and there are cases where visual salience is interpreted
to mean the opposite (Misyak et al., 2016). In addition, a general expectation that
communicative objects should be visually salient is not mutually exclusive with our
account, and is in fact consistent with the main idea in our proposal: To elicit mental-
state inferences through objects, the communicator must also ensure that the recipient
will notice the object in the first place.

A second potential concern is that people find unusual arrangements of objects
to be more likely to be communicative, and to signal avoidance. To test for this
possibility, in Experiment 3a we collected “unusualness” ratings for our stimuli and
found that the cost information significantly explained participant judgments when
controlling for unusualness (see SM for details).

5.12 General Discussion

Human communication is remarkable in that, beyond words and gestures, we can
communicate through objects. Here we proposed that this ability emerges from our
capacity to represent and infer other people’s mental states. Specifically, we pro-
posed that, if we can reason about other people’s mental states based on how they
manipulate objects in the environment, then people can also arrange objects with the
purpose of revealing their mental states to agents who encounter these objects.

In exploring this idea, our paper makes three contributions. First, we imple-
mented a computational model of social inference from physical objects. This model
revealed how communicators can use objects to elicit mental-state inferences in ob-
servers, and how observers can infer the communicative meaning of objects, without
any direct communication occurring between the agents. This provided proof-of-
concept that the computations proposed in our account are sufficient to give rise to
this phenomena. Second, we directly tested whether people’s inferences about the
communicative meaning of an object could be explained by our account. Finally,
we tested whether people’s intuitions about communicative objects could only be
the result of explicit systems of pedagogy and convention. Combined, these results
suggest that mental-state inferences support the creation and interpretation of novel
communicative objects, while pedagogy and convention drive their widespread use.

5.12.1 Model assumptions and study limitations

At its core, our model consisted of a Theory of Mind implementation which we built
following several computational principles that each enjoy strong empirical support:
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social interactions involve agents thinking about each other’s mental states (Good-
man and Frank, 2016; Frank and Goodman, 2012); mental-state reasoning is struc-
tured around an assumption that agents maximize utilities (Jara-Ettinger et al., 2016;
Jern et al., 2017; Lucas et al., 2014); inferences about other people’s minds is per-
formed via some approximation of Bayesian inference (Baker et al., 2009, 2017); and
agents are typically cooperative, particularly when cooperation is easy (Powell, 2022;
Rand, 2016; Warneken and Tomasello, 2006). To capture how we might extract so-
cial information from the physical world, we made three further assumptions in our
experiments and model.

Our first assumption was that agents can identify which objects in a scene were
manipulated by an agent (as opposed to being the result of some inanimate force; e.g.,
the wind). This assumption was reflected in the formulation of our decider model,
where deciders know both the initial scene s0 and the final scene s (such that any
discrepancy between s and s0 reveals the costs that the enforcer incurred, and the
costs that they introduced to the decider). While related research shows that some
form of this capacity emerges in infancy (Newman et al., 2010; Keil and Newman,
2015b), it is likely that in more realistic contexts people do not know the initial scene
s0 and instead have a prior distribution over potential initial scenes p(s0).

Our second assumption was that the objects we considered were intentionally
placed by an agent. In real-world situations, this is not known a priori and people must
determine which objects were placed intentionally and which were not. Intuitively,
there are many objects that, when encountered in front of a door, would not elicit a
communicative inference because their placement appears unintentional. For instance,
finding an empty paper bag (which an agent might have simply discarded), a soccer
ball (which might have rolled over to the front of the door), or a wallet (which
an agent might have dropped) would not trigger communicative inferences, because
their placement does not seem intentional. Recent research has found that people
see behavior as intentional when the outcome causally depends on the agent’s desires
(Quillien and German, 2021) and when the agent’s behavior increases the odds of the
outcome happening (Ericson et al., 2023). Integrating these types of processes into
the detection of communicative objects is a key step towards having a more flexible
framework that can both infer the meaning of communicative objects, and disregard
objects that lack a communicative purpose.

Our third assumption was that people can estimate the cost associated with mov-
ing objects (for the enforcer) and navigating around them (for the decider), but our
model did not explicitly capture how people determine these costs. Recent work shows
that, from childhood, people might estimate the effort and difficulty of manipulating
objects through an intuitive theory of physical action (Yildirim et al., 2019; Gweon
et al., 2017), and integrating this work into our model may enable us to explain com-
municative objects in more complex situations. This is a direction we hope to pursue
in future work.

Our work also has two important limitations. Our first limitation is that we fo-
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cused our analysis on a specific class of objects where agents reveal their mental states
by imposing minimal costs on observers, which we referred to as low-cost communica-
tive blockers (LCCBs). These LCCBs are widespread and easy to find in our everyday
lives (see Figure 5.1 for examples). How might our framework extend to other types
of communicative objects in broader contexts? Most directly, our framework can also
explain cases where agents decrease a cost to signal invitation (e.g., leaving a box of
cupcakes intentionally open to signal that anyone can grab one, or leaving an office
door ajar to indicate we can be interrupted). From our model’s perspective, these
inferences are symmetrical, with the only difference being that the observer would
infer that a communicator intentionally lowered the cost (rather than increased it).
This is a prediction that we hope to test in future work.

The most general formulation of our proposal is not intrinsically tied to cost ma-
nipulation specifically, but rather to environmental manipulations that reveal mental
states. Our work is thus consistent with related work showing that people can use
no-cost markers to signal flexible meanings. For instance, when given a sticker to
mark which of three cups someone should choose, people use the sticker to signal the
right cup. By contrast, when one of the three cups must be avoided, people now use
the sticker to indicate avoidance (Misyak et al., 2016). This has been hypothesized to
reflect a process known as “virtual bargaining” (Misyak et al., 2016, 2014; Misyak and
Chater, 2014), where people produce whichever solution they would have reached if
they had gotten the opportunity to have an explicit discussion about it.

More broadly, if people communicate through objects by attempting to elicit men-
tal states in observers, then communicators must also pay attention to additional di-
mensions that we did not explicitly model. Specifically, for observers to infer mental
states from an object’s position, the object must be noticeable, and appear inten-
tionally placed. Otherwise, the object might be ignored or dismissed. Intuitively,
these features might also play an important role in the use of low-cost communicative
blockers (Figure 5.1). These additional dimensions are vital for a full computational
model of how we infer mental states from objects.

A second key limitation is that our model represents objects in terms of the util-
ities they provide or impose on agents. This abstraction means that our model does
not make any conceptual distinctions between different types of objects as long as
they impose the same costs (or provide the same rewards). For instance, our current
implementation represents a plastic cup and an expensive water bottle on a table
as equivalent (because they impose the same physical cost), even though these two
objects would likely elicit different mental-state inferences in observers (in one case,
an observer might assume it is trash, while in the other it may be interpreted as a
“spot saver”). Similarly, a delivery bag in front of a door may impose a small cost, but
knowing what delivery bags are would prevent us from inferring that this is a low-
cost communicative blocker. While these examples demonstrate how representing an
object’s category can strip it of a communicative purpose, there are also cases where
representing an object’s category strengthens it. For instance, a sisal rope and red

31



velvet rope can both be used to communicate avoidance, but the latter communicates
it more strongly (and also carries the implication that there could be negative con-
sequences if the message was ignored, possibly due to knowing that the object was
costly and built specifically for this purpose). Intuitively, agents also strategically
take this into account when deciding which objects to use to communicate. This is
broadly consistent with our account, as it reveals further social reasoning about what
observers might find easier to interpret, but is not yet captured by our model.

5.12.2 Open questions

Our work leaves several major questions open. A first open question stems from our
focus on adults: What is the developmental trajectory of how people use commu-
nicative objects? Related research shows that the capacities necessary for these kinds
of inferences emerge early in development. From early childhood, people can infer
the presence of a hidden agent based on the structure of the environment (Newman
et al., 2010; Keil and Newman, 2015b; Saxe et al., 2005; Ma and Xu, 2013); we can
estimate the difficulty associated with fulfilling different tasks (Gweon et al., 2017;
Bennett-Pierre et al., 2018; Yildirim et al., 2019); and we can explain behavior in
terms of unobservable mental states, like beliefs, desires, and intentions (Wellman,
2014; Gopnik et al., 1997). Most strikingly, recent work has shown that children can
also use Theory of Mind to infer the transmission of ideas based on how different
agents build similar artifacts (Schachner et al., 2018; Hurwitz et al., 2019). This
“intuitive archeology” likely shares a common basis with the inferences in our model,
opening the possibility that even children can detect and infer the communicative
meaning of objects through Theory of Mind. It may even be the case that the infer-
ences we studied here are in fact an extension of people’s “intuitive archeology” and
ability to reason about the history of objects.

A second open question is the relative difficulty in creating versus interpreting
communicative objects. While our computational model can explain both the creation
and interpretation of communicative objects (as revealed in our model simulations),
our experimental work focused exclusively on the second component. We did so
because, under our account, all people ought to be able to infer the meaning of
communicative objects, while the ability to generate them can be limited to a few
individuals. We thus do not know the extent to which people can easily create ad-
hoc communicative objects in new situations. It is possible that, when creating new
communicative objects, people might err on the side of caution and prefer to make the
costs higher than would be necessary, to minimize the chance of an agent not realizing
the communicative content. As people become more confident that the objects they
place are being recognized as communicative, they may subsequently lower the costs.
We hope to explore these questions in future work.

A third open question is whether the inferences that we studied here are an ex-
tension of pragmatics in language. People’s ability to derive non-literal meaning in
language is supported by a form of recursive reasoning, captured by the Rational
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Speech Act (RSA) framework (Franke and Jäger, 2016; Scontras et al., 2018; Frank
and Goodman, 2012; Goodman and Frank, 2016). Our model can be thought of as
an RSA model where the medium people use to communicate is objects (instead of
utterances) and our costs are physical effort (rather than memory retrieval or utter-
ance length). At the same time, the ability to perform recursive social inference is
not unique to language and it is possible that the phenomena we studied here reflect
a more general, non-linguistic Theory of Mind. As such, these phenomena might
constitute a more primitive form of communication that precedes the ability to do
pragmatics in language (i.e., a kind of proto-communication). This is a question that
goes beyond the scope of our work.

Finally, our work leaves open the question of how to capture other types of infer-
ences that people make from objects. Intuitively, communicative inferences are only
a sliver of the social information that we can read from objects. For instance, objects
can also lead us to infer aesthetic goals (e.g., placing an object that we like in a visible
location within our house), functional goals (e.g., leaving objects like winter gloves
next to our front door for convenience), or even personality traits (e.g., inferring that
someone is messy based on the general pattern of objects on their desk; Gosling et al.,
2002). It is possible that these inferences could be captured through a richer model
of Theory of Mind that can consider a broader set of goals that agents have when
interacting with the environment, and this is a question that we hope to pursue in
future work.

5.13 Concluding Remarks

Humans have a remarkable capacity to share their mental states through their behav-
ior, language, and even the way they arrange objects in their environment. Our work
shows one way in which people can share their mental states through objects. And
yet, the types of meaning that we give objects is even broader than what we show
here—a metal band can signify a lifelong vow, a chiselled stone can commemorate a
lost loved one, and a menorah can reveal one’s metaphysical beliefs. We hope that
our work is a step towards understanding the rich social nature of the physical world.
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Chapter 6

Discussion

The world is often thought of as comprised of either physical or social entities. How-
ever, like the examples in Figure 1.2 demonstrate, this division is not always so
clear-cut. While a collection of rocks scattered across the ground contains no social
information, these same rocks assembled into a stack elicit a variety of social infer-
ences: we can infer that the arrangement contains social information (e.g., that it
was intentionally assembled by an agent), we can reconstruct what happened (e.g.,
we can imagine the agent stacking one rock on top of the other), and we can even
infer potential mental states (e.g., we can infer why the agent built it). What com-
putations and representations underlie our capacity to reason about physical objects
embedded with social information?

Humans have specialized cognitive capacities to process and reason about physical
and social entities—intuitive psychology and intuitive physics. These capacities are
online from early childhood, supporting a theory-like, causal understanding of physical
objects (Spelke and Kinzler, 2007; Téglás et al., 2011) and agents (Gopnik et al., 1997;
Wellman, 2014). It is possible that, when reasoning about physical objects in social
contexts, both capacities are engaged. While much is understood about these two
capacities, less is understood about how they might interact.

The outputs of these capacities are not the only potential inputs to the social
representations of physical objects. Before we even realize, some information is au-
tomatically and irresistibly processed by our visual system. Previous work in vision
science has revealed that this information goes beyond colors, lines, and contrasts, also
capturing social properties such as an agent’s gender (Bruce et al., 1993; Brown and
Perrett, 1993) and dominance and trustworthiness (Todorov and Duchaine, 2008).

To begin elucidating these representations, I first sought to understand three com-
mon social inferences that people can make from physical objects. I proposed that
detecting whether an arrangement or object contains social information may be, at
least partially, driven by low-level visual features. Here I focused on a specific kind of
social information: whether an agent was involved in manipulating the arrangement
or object. Given that an agent was involved, I then proposed that combining our
commonsense physics and commonsense psychology enables us to reason about the

34



agent from how they manipulated the environment.

6.1 Chapter 2-5 Review

In this thesis, I tackled three interconnected inferences: (1) detecting that an object
contains social information, (2) reconstructing what an agent did with the object,
and (3) inferring the agent’s mental states. I introduced previous work showing
how our visual system is specialized for certain types of stimuli, including agents.
Then, I hypothesized that this specialization might extend beyond agents and to the
traces they leave behind (Chapter 2). I presented a series of experiments testing
people’s visual search performance for these “traces of agency”, and found that people
were significantly faster and more accurate than when compared to “non-agentic”
arrangements.

After presenting some initial evidence for one way in which people may detect
whether an object contains social information, I presented an alternative account:
Could people detect whether an object contains social information simply by consid-
ering the physical plausibility of it occurring naturally? Here I presented a compu-
tational model that generated the probability that an environmental manipulation
occcurred through some natural physical process (Chapter 3). Then, I shifted to-
wards using this social information as an assumption: given that we know that an
object contains social information (e.g., that an agent was involved in manipulating
it), what can we learn about what the agent did and their mental states? In Chapter
3, I delved into the first part of this question. I presented a computational model
that combines two foundational cognitive capacities—commonsense psychology and
commonsense physics—in order to explain how people can reconstruct the actions of
an unseen agent. Predictions from this model, combined with human behavioral data,
revealed that this inference can be achieved by combining our understanding of how
desires lead to actions with our understanding of how our actions lead to physical
traces in the environment.

Once we know that there is an agent to reason about, and we can reconstruct
their probable past actions, we can infer their mental states. After reviewing a rich
body of experimental and computational work detailing how we can infer an agent’s
unobservable beliefs and desires from their observable actions, I present another com-
putational model of how objects can be used to communicate (Chapter 4). Like in
Chapter 3, the use of “communicative objects” can be supported by a combination of
commonsense psychology and commonsense physics. Taken together, these threads
of research begin to reveal how even physical objects can be perceived and reasoned
about as social entities.
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6.2 Open questions

This work is a first step in illuminating the computations and representations that
underlie our capacity to reason about social information from the physical world.
As such, many open questions remain, spanning a wide range of disciplines within
psychology, such as cross-cultural research, developmental science, and comparative
cognition. For simplicity, I present these areas of future research as its own sub-section
below.

6.2.1 How do intuitive psychology and intuitive physics com-
bine?

According to the theory of core knowledge systems (Spelke, 2003; Spelke and Kinzler,
2007), our core systems for objects and agents are isolated—meaning that they do
not pass information to other systems—and encapsulated—meaning that they do not
have access to the information from another system. These informational constraints
are present until children acquire another capacity that enables them to combine
representations across any conceptual domains: natural language. From these core
systems emerge our intuitive theories, abstract causal models of the world (Wellman,
1992; Carey, 2009; Gerstenberg and Tenenbaum, 2017). Here I focused on phenomena
where two intuitive theories, intuitive psychology and intuitive physics, are jointly
engaged. How do these intuitive theories readily combine?

One potential hypothesis is an extension of the core knowledge account: These
intuitive theories inherit the same informational constraints as our core systems (i.e.,
they are isolated and encapsulated, but with the acquisition of natural language,
humans learn to exchange information between them). This makes the prediction
that pre-verbal children should be unable to reason about physical objects embedded
with social information. A second potential hypothesis is that these intuitive theories
do not inherit the same informational constraints as our core systems. This makes the
prediction that even pre-verbal children can leverage physical information for social
reasoning and vice versa. Finally, a third potential hypothesis, related to the second, is
that these intuitive theories contain informational redundancy. That is, our intuitive
psychology is theorized to handle agent actions, but may also have a specialized
ability to handle agent-object interactions (e.g., similar to the cookie crumb vignette
in Chapter 4). This makes similar predictions to the second hypothesis, but makes
narrower claims on the cognitive faculties that are engaged.

6.2.2 Is this capacity uniquely human?

If these intuitive theories are isolated and encapsulated, then non-human animals
cannot reason about physical objects in a social way (even if they possess both of
these intuitive theories) as they lack natural language, the capacity that supports
the ability to exchange information across these systems. However, if this hypothesis
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is false, there may exist another way for information to flow between these systems.
One approach to tackling this hypothesis—and illuminating whether this capacity is
uniquely human—is to first understand the limits of an animal’s social and physical
reasoning and then use this to guide predictions about the kinds of social inferences
they should be able to make from physical objects.

Previous work done with non-human primates has shown that they are able to
reason about physical objects and interactions between them, in a way that resembles
human infants (Santos, 2004). In particular, non-human primates can track objects
that move behind an occluder (Hauser et al., 1996; Uller et al., 2001), understand
that a solid object cannot move through another object (Santos and Hauser, 2002),
and that objects cannot move by themselves (Hauser, 1998). Moreover, other work
has shown that non-human primates can also represent what others can and cannot
see and hear (Santos et al., 2006), as well as what they know (Kaminski et al., 2008;
Marticorena et al., 2011). These findings suggest that non-human primates may have
the cognitive ingredients to reason about social objects.

Despite the striking similarities between the cognitive capacities of human infants
and non-human primates, however, there are also significant functional differences
between them, specifically regarding their ability to reason about others. Non-human
primates have not been shown to have the capacity to understand that agents can
have distinct representations of the world that are decoupled from reality (Martin
and Santos, 2016). This stems from previous studies showing that, while non-human
primates can represent others’ knowledge and ignorance, they lack the kind of belief
representation required to pass the false-belief task (Kaminski et al., 2008; Marti-
corena et al., 2011). This limitation of representational capacity hinders the kinds
of social inferences that non-human primates could make from the physical world, as
some of these inferences can be quite rich (e.g., reconstructing an agent’s past actions;
Chapter 4).

Another example of these differences in social reasoning comes from research with
vervet monkeys. Vervet monkeys have an astonishing degree of social intelligence,
including a nuanced repertoire of vocal calls to signal different types of predators,
each associated with different escape responses (Seyfarth et al., 1980a,b). Despite
this, vervet monkeys routinely fail to identify predators despite clear physical evidence
of their presence. For instance, vervet monkeys fail to infer that a python is hiding
in a nearby bush when they encounter the distinct tracks that they leave behind.
Similarly, vervet monkeys also fail to infer the presence of a leopard upon encountering
a gazelle carcass on a tree (where leopards usually drag their prey so they can feed
in solitude; Cheney and Seyfarth, 1985). Critically, this failure appears to persist
even after vervet monkeys have, in past events, seen the direct association between
the physical evidence and the predator (Cheney and Seyfarth, 1985, 2008). These
findings suggest that, despite having the cognitive ingredients for this capacity, we
have not yet found a non-human animal that can combine them.
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6.2.3 Context in culture

It is no surprise that cultures around the world communicate differently. One key
feature that distinguishes the communicative style of a particular culture is how
dependent its constituents are on context (Hall, 1976). In high context cultures,
much of the information that agents intend to communicate is done so implicitly
or subtlety. These cultures tend to be relatively homogeneous and collectivist. On
the other hand, low context cultures require communication to be much more direct.
These cultures tend to have more diverse populations and be largely individualistic.
These distinctions are not a binary one, and cultures can and do form a continuum
of context dependence.

These variations between communicative styles may imply that people from each
culture may also reason differently about social information within physical objects.
However, my proposal relied on foundational cognitive capacities that support social
and physical reasoning, so there should not be any differences between people from
different cultures in terms of capacity. In Chapter 5, I tested participants from the
Tsimane’—a farming-foraging tribe indigenous to the Bolivian Amazon who have
limited access to market-integrated communities—and showed that they made similar
communicative inferences about the meaning of objects as our U.S. participants.

In terms of usage, however, differences between cultures may exist. For instance,
people from any culture should be able to reason about the objects in Chapter 5, but
perhaps people from high context cultures use these objects more often, or are faster
at making the inference (due to conventionalization; see Section 6.2.5). This could
be tested in a handful of ways. Participants could be shown

6.2.4 Parsimony in explanation: heuristics versus Bayesian
inference

The computational frameworks I proposed involve relatively complex computations.
A seemingly parsimonious alternative is to consider whether heuristics could explain
some or all of these findings. Heuristics consists of simple rules that guide agents
towards fast solutions to complex problems. However, as I demonstrate below, the
critical problem with heuristics is that they generalize poorly, becoming the less par-
simonious than the models I proposed.

In Chapter 3, I proposed a computational model that formalized the detection of
agents as Bayesian inference over a generative model of natural physical outcomes. In
particular, the generative model was built using a physics engine, which both modeled
all of the objects in the scene and simulated thousands of physical outcomes. Using
Bayesian inference, I computed the probability that a particular scene occurred nat-
urally and used that to further compute the probability that an agent was involved.
However, a simpler approach that participants may have been using is to rely on
two key features of the stimuli: how far the blocks were placed from the funnel and
whether they were stacked. This may explain a great deal of the variance in partic-
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ipant judgments that my model did. However, one example where these heuristics
would fail is if a circle made of blocks was arranged close to the funnel. According
to the heuristics approach, participants should not find this to be the work of an
agent, despite the peculiarity of this pattern occurring by chance. While this is also
something not yet handled by my model, I hope to pursue this in future work.

In Chapter 4, I presented a computational model that formalized mental event
reconstruction as Bayesian inference over a generative model of environmental traces.
Here I directly accounted for the possibility of heuristics in the design of the stimuli
(e.g., ensuring that the target goal was not always the one closest to the cookie crumbs,
and that it could not be determined by projecting a straight line that intersected
the entrance and the location of the cookie crumbs). Additionally, I computed two
multinomial logistic regressions trained to predict participant judgments as a function
of the distance between the pile of cookie crumbs and each goal, the average distance
between the pile of cookie crumbs and each door, the number of doors, and all of
their interactions (Experiment 3 also had an additional predictor for the number of
agents in the room). Both of these regressions explained significantly less variance in
participant data than my proposed model.

Finally, in Chapter 5, I presented a computational model that formalized commu-
nication through objects as recursive Bayesian inference. Here I directly addressed
the heuristics alternative throughout by addressing conventions. Conventions, which
perform the same functional role as heuristics, are a key part of how I hypothesize
that communicative objects become widespread. However, in the experiments I pre-
sented, I tackle the question of how people navigate around objects that do not have
a conventional meaning.

Despite the initial parsimony of heuristics-based approaches, they tend to lack the
ability to generalize and, when employed in the experiments here, failed to capture
the fine-grained patterns of participant judgments. On the other hand, the models I
proposed not only explained graded participant judgments with quantitative accuracy,
but can also be easily extended to account for broader kinds of inferences. While the
work I presented here posed a problem for heuristics-based approaches, it remains an
open question whether there exist heuristics that are flexible enough to capture the
inferences I studied.

6.2.5 Efficient computation and amortized inference

Heuristics tend to be an appealing alternative for scientific parsimony, but also for
computational efficiency. Bayesian inference, especially in problems with very large
hypothesis spaces, can be computationally expensive or intractable. Previous work
has shown that some inferences that were previously thought to be handled by high-
level cognition (e.g., our intuitive theories), are actually “baked into” low-level visual
processing. For instance, Battaglia et al. (2013) propose an intuitive physics engine
framework to explain how people make stability judgments, however more recent
work has shown that this capacity might be supported by more basic visual processes

39



(Firestone and Scholl, 2016).
In addition to built-in computations, visual processing can also support when

these computations occur. In Chapter 2, I proposed that low-level visual features
may serve as a filter for social reasoning. That is, instead of applying Theory of
Mind over every object in our visual experience—which would be computationally
demanding—our visual system handles when an object should be reasoned about
further.

Some computations are not handled by low-level visual processing in any signif-
icant way, yet still improve in efficiency over repeated interactions. For instance, in
Chapter 5, I discussed the phenomena of communicative objects and how, often in
our everyday life, interpreting the meaning of these objects seems incredibly trivial.
I attributed this triviality to convention and pedagogy, and argued that these are the
tools by which the meaning of communicative objects becomes widespread. Conven-
tions, in particular, may be a way that humans perform amortized inference, where
the goal is to figure out how to re-use inferences in future situations (Gershman and
Goodman, 2014).

In the series of accounts that I presented, another question that remains is to what
extent are these inferences automatic and irresistible, rather than only purposefully
engaged. In the cue-based account of Chapter 2, my proposal is that these compu-
tations are happening at the level of visual processing. While it is currently not yet
known whether the visual system is handling the recognition of social information
(versus simply recognizing small errors), this level of processing is automatic. On the
other hand, in Chapters 3, 4, and 5 I tested people on their ability to perform an
explicit inference. These kinds of inferences are necessary for navigating the environ-
ment, lending credibility to the idea that they, too, may be automatically engaged.
However, it remains to be tested whether participants would perform this kind of
reasoning when their current task is irrelevant to the inference.

6.2.6 When and how do agents come into the picture?

In Chapter 2, I presented a cue-based account of how people come to detect that an
object contains social information. I presented two visual search experiments that
revealed that people have specialized attention for slightly-misaligned block towers
over perfectly-aligned ones. One possibility is that people are perceiving agentiveness.
That is, that the visual system interprets the slightly-misaligned block towers as
containing social information. In face perception, it was previously thought that
certain high-level features, like trustworthiness, could only be inferred after inferring
the identity of the face. However, previous work has shown that to not be the case,
instead revealing that these judgments occur simultaneously (Todorov and Duchaine,
2008). Moreover, recent work has shown that our visual system intrinsically computes
basic social relations (Isik et al., 2017). This hypothesis makes the prediction that
these inferences should show activation only in visual cortex.

An alternative possibility is that our visual system is instead sensitive to small
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errors, leaving high-level cognition to handle the detection of agents. This resembles
how vision processes an agent’s movement, but high-level cognition interprets the
agent’s underlying mental states. This hypothesis makes the prediction that these
inferences may also show activation in brain regions other than visual cortex, such
as in the medial prefrontal cortex or temporo-parietal junction, two regions known
to be engaged during social reasoning (Saxe and Powell, 2006). Investigating these
predictions could be tested using fMRI.

6.2.7 Inferring mental states beyond communicative intent

In Chapter 5, I proposed a theoretical account of how people infer others’ mental states
from physical objects. I focused on communicative intent as a case study, investigating
how objects can reveal whether an agent should approach or avoid something in the
environment. While my account explained the fine-grained patterns of participant
judgments, the scope of this work was limited to a small subset of communicative
meanings and an even smaller subset of mental states.

Beyond serving as deterrent or invitational signals, objects can also communicate
one’s moral and metaphysical beliefs (e.g., through religious symbols) or wealth (e.g.,
through lavish jewelry). Furthermore, objects can reveal how long ago something was
built, how much effort it required or how many people were required to build it, how
much care was put into it, and even to what extent the goals were functional or aes-
thetic. I hypothesize that all of these inferences are also supported by a combination
of our intuitive psychology and intuitive physics, a more complex combination than
I proposed here, but this remains an open question.

6.2.8 Detecting intentional action

Without knowing whether an object was placed intentionally, we would clash in all
sorts of social situations, such as not realizing that an object could indicate that a
parking spot is taken (e.g., Figure 1.2i) or that a certain path should be avoided
(e.g., Figure 1.2l). Even infants have an understanding of intentional, goal-directed
actions (Gergely et al., 1995; Woodward and Sommerville, 2000). However, since
agents and their actions are unobservable in the problem I consider here, how do
we know whether an arrangement or object has been intentionally manipulated, as
opposed to being the result of a natural force (e.g., the wind) or even the result of
agent accidentally interacting with it? And to what extent is the solution to this
problem divided between perception and cognition?

Arrangements of objects that appear intentional often do because there is a near-
zero chance that the environment could produce them. Consider a cairn: what are
the chances that a stack of rocks, say two feet in height, naturally occurs in a forest?
Even through simple combinatorics, only a handful of configurations end up making
an upright stack. This inference seems to be particularly sensitive to the environment.
If the rocks lie at the base of a cliff, this inference suddenly flips, since piling would be
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a natural occurrence. If placed in the middle of one of two hiking trails, it swings back
in the other direction, not only because of the implausibility of occurring naturally,
but also because we can imagine a reason that an agent would have built it there.

Having prior expectations about what agents desire also gives us an expectation
over their probable actions. If valid proposals to explain an action fail to come to
mind, then we may label the action as an accident. The cairn, for instance, would be
difficult to interpret if, instead of being placed along the middle of one of two available
hiking paths, was placed far away from the trails, in the middle of the forest (here
it might even be inferred to be art). A more complete account of how we represent
physical objects containing social information must also include an explanation of
how we disentangle intentional, accidental, and natural actions.

6.3 Conclusion

Taken together, the work I have presented here attempts to advance our understand-
ing of human social cognition. First, I presented an account that suggests that the
visual system is specialized to process social information from physical objects that
reveals the involvement of an agent. Second, I presented a computational model that
shows that the combination of two foundational cognitive capacities can explain how
we reconstruct an agent’s past actions. Finally, I presented another computational
model that similarly combines these two capacities, this time showing how they can
support the use of objects to convey social information, like mental states. This
work contributes to our understanding of human social intelligence transforms our
experience of the physical world.
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